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This paper presents the proof of existence of a smooth solution of a system of boundary 

layer equations for a plane unsteady flow of viscous incompressible fluid in presence of an 

arbitrary injection and removal of the fluid across the boundary. 

It is shown that for such flows, a solution of Prandtl’s system always exists for all t 

near the beginning of flow around the body and, during the interval 0 6 t < t, along the 

whole length of this body. A method is given of constructing an approximate solution of the 

system of Prandtl’s equations of the boundary layer theory, and convergence of these 

approximations is proved. A short resume’ of results obtained in this paper is given in [l]. 

We shall consider a system of boundary layer equations for a plane unsteady flow of a 

viscous incompressible fluid 

Ut + uu, + uuy = - Pr + y/l,, 4 + U!, = 0 
(1) 

in the region 

D (0 < t < t,, 0 < 5 < 50, 0 d Y < =I (‘0 .< DC, Q < 00) (1.1) 

with the conditions 

u (k.0 -;; uo (x7 Y), 11 I:,=0 = 0, 7) I g=o = Do (tl 4, u jxzo =A 111 (t, 7J) (2) 

lim u (t, 2, Y) = U (t, 5) (3) 
y-f” 

Bernoulli’s law II, + UU, = - prcoanects the functions p (t, z) and II (t, z). 

We assume that the density p = 1. 

[2 and 3] give the derivation of these equations. Prandtl’s system of equations for a 

stationary boundary layer is investigated in [4]. Methods which we shall apply in construct- 

ing solutions of the problem (1) to (3), can also be used to prove the existence of a solu- 

tion of the Prandtl’s system of equations for a stationary boundary layer. 

Physical conditions of the problem demand that u > 0 when y > 0 and U (t, r) > 0. 
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We shalf assume that uo > 0 and at > 0 when y > 0 ; uoy > 0 and htu> 0 when y >/ 0. To 

prove the existence of a solution to the problem (If to (3) in D when to or xo are restricted 

in a manner which will be shown later, we shalt introduce new independent variables 

Differentiation of the first equation of (I) with respect to y and subsequent use of 

both equations of (1) to eliminate u,, and u, leads to the following expression for w 

L(W)-~2Wn~-wW7-ljWE+pXwI)= 0 (5) 

Change of independent variebles (4) transfotms region D into 

QP,<~<&, K%<~o, O<sl<U(z,%)) 
and conditions on the boundary of D become 

w I+=0 = GO@ = wo (5, VI, w le=o = Uty = WI (z, rl), w Ii,-_u<i, 41 = 0 (61 

1 (WI fVww,-v&J - pr = 0 when Q = 0 (7) 

on the boundary of 0. We shall assume ua and n1 to be each that w. and wX are sufficiently 

smooth fnnctions on the corresponding boundary of a. Also II (7, Q) > 0 for all T and [. 

Solution of the problem (5) to (7) will be obtained as a limit of functions wn as n + 00, 

giv= by 

L, (w”) s Y (w*-y wnn* -t&n - r)wc* + p&v,n = 0 (8) 

in 0, where w” satisfy conditions (6) and 

I, (wn) 3 vwn-lwnn - vown-I- pz = 0 

on the boundary 7 9 0 of Q. 

(9) 

We shall assume that w” is a smooth function satisfying (6) aud the condition that 

too > 0 when 77 < U (7, 0. Al so, we shall assume the existence of such a smooth fnnction 

4~0 (i, %, r)) in St, that too>, ‘PO (0, %, ri), WI > 90 (“G, 0, 1) and ‘PO > 0 when 
tj < U f’?-,&. while at the same time qpo 5 m. (u (a, %) - # for some m. > 0 and 

k > 1, provided that II (7, 0 - q < &, where a0 > 0 is a small number. 

With the initial assumption that such solution ma (n = 1, 2, . . . ) of the problem (81, (6) 
- 

and (9) exists which has continuous derivatives of third order in the closure a of 0, we 

shall show that w” converge to the eolation of the problem (5) to (I), as n + m. This will 

be followed by a proof of existence of w” and an approximate method for their constmction 

will be given. Wa shall also 8SSUme that to and xa are finite. 

Lemma 1. Let a smooth function V be such that L, (v) 30 in fl and Z,, (v) > 0 when 

7 = 0. Let V,< w” when 7= 0 and c= 0. Also, let w”“> 0 when t7 = 0. Then, V,< w” 

everywhere in a. 

Let a smooth function V, be such that La (V,) < 0 in I-,$ I, (V,) < 0 when 7 = 0 and let 

V, >/ w” when 7 = 0 and t= 0. Also, let w” - ‘> 0 when q = 0. Then, V, >,ws everywhere in 

Q. 
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Proof. Let ns prove its first part first. Consider the difference wR - V = aa We have 

~(z)=L,(w~)--LnO~~0, L (4 = &(uF) - In (v) = v to”-‘2% <o 

Previous conditions imply that z >,O when ‘J-= 0 and when c= 0. Consider the fuuction 

I1 = ze -r. Obviously, zl>,O when 7= 0 and e= 0, and t1 < 0 when q= 0. From this it 

follows that zr canuot assume a negative minimum when 7~ = 0, since at this point we have 

9 > 0. On the points belonging to 0 we have 

L, (2) = (& (2’) - 2%) e* < 0 (10) 

from which it follows that x1 cannot assume a negative minimum on the internal point of 

Q, nor when (4= x0 or T= to, since at such poiute a’? = 0, rtc<O, z’r < 0 and zlY $0, 

from which it follows that L, (9) - 2x> 0. Nor can f’ assume a negative minimum on 

the boundary 17 = U (7, 0 since we have, on this surface, tu”-t = 0 while at the minimum 

point z1 we have, provided it can be reached, that when B = U (7, 0, - z’,, - q 11~ + 

P,z*~ re 0, hence L, (zl) - 2’ > 0. The latter follows from the fact that the vector 

(- I, - q, 9,) either lies on the plane tangent to the surface q= U (7, 4‘) or, by Bernoulli’s 

law, it is orthogonal to the normal vector 

u, + rue -“i- Pr - u,+ uu,+ Px==O 

Hence, t’>/O in Q and w” >/ V in fi. Remaining part of Lemma 1 is proved fn the 

analogous manner. 

Lemma 2. There exists a constant ~a > 0 such, that for all n and T,( ho, the inequalities 

H, (z, E, rl) > w” > h, (TV E9 1111 where HI is continuous in ft and the fnnction 

A, (7, 6, ~1 is positive for ?I < U (z, $J, z < zu and continuous in a, are fulfilled 

in the region 6. 

Proof. Let ns constrnct the functions V and V, satisfying the conditions of Lemma I. 

we shall define a twice continuously differentiable fnnction t,& (7, e, q) as follows. Let 

$=~((a,tl)wheuR <a,, O<&<l/,minU (T,EJ 

x(s)=e' whenOgs\(i; 1 .<X(S)<< UpIi s>rl 

$==(U (~,%)-~)kwhen~ -rl <so; t?<ao<~~dwhenbI<R <U -&a 

where a. is a small number. Let the functions V and V, be 

v = VP&?-“’ (m, @lr a = const> 0) 

v, = M (C - ePq$' (PI, B, c, Jf = co=t> 0) 

We shall show that the constants entering V and Yt can, together with a number 

+Ko > 0, be chosen independent of n and in such a manner, that V 4 w”‘l ,( V, for T< To, 

implies that V$ wn,< V, for 7,< To. Let us consider I,, (v) and I, (v,). When eWa7+ )/, , 

we have 

In (v) = vtan-lm*qe-mT - qj7F1 - px > mewa [Vma le-a’ - vg] - px > 0 

I, (VI) = -VW”-l M$lep7 - vown-* - px < me-(I+ (- v&MeQ’ - z+,) - pr > 0 

provided U, > 0 aud & > 0 are sufficiently large. 

Constants m, C, and M shall be chosen accordingly from 

rpo(z+ ihq) > m$(T,E,q), C- eBsn>l, Mamax {w,,wl; 
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Let us now choose p > 0 such that Ln (V,) < 0 in a. Taking into account the fact that 

ws-l> V = m$e-af, we have, 

G---e P5[v (~*~-=*)z~~~z~~i~ + I%@ + ~.~~~~~~I~~ < 0 

provided that @ > 0 was chosen sufficiently large. 

Let US now compute Ln (V). We have 

_I,, (if) v (J’-t)2 ,h$nqe-l’ -j o~z$\()e-~’ - ItL$),ePT - ~rn$ge-a’ + pX~t~$.,,ePT 

Since0 <t~~~-t < M (C - e PI”) eaf, the constant u > 0 can be chosen independent of 

n and sufficiently iarge to ensure that f;, (v) > 0 in 0 when q < U (7, 0 - &, as 9 >, min 

fo,,,li. Intheregionrt>,U(7,~)-6,wheretlr=(U-rl)k,wehave 

L,, (V) = me-” f~(tu~-‘)~ k (k - 1) (U --q)ke2 - k(U -q)k-lUT +a (U -q)” - 

-qk(lJ -q)h’-‘lU 4 - pxk (U - q)k-l] 

From Bernoulli’s law it follows that U 7 .+ qU E + pz = - (U - q ) U 4. Therefore 

&, (V) > me-“[k(U -q)* UE i-a (u -q)*] > 0 

provided u > 0 is sufficiently large. Consequently, conditions of Lemma 1 are fulfilled for 

Y and fJ, in G, if T< 7o and ~0 is such that eaaTo = K. Values of aand 7. depend only on 

the parameters of the problem (5) to (7). Therefore, if V, >/ton-t >/ V when ~4 70, then aIf 

the conditions of Lemma 1 are fulfilled for V and V, and V, >/ w” > V for 7.6 a. Since it 

can be assumed that these inequalities are also fulfilled for w” at any value of n and 

7,( ro, we have V $ w” < V, , which completes the proof. 

Lemma 3. There exists a constant & > 0 such, that for all n and 4;< [a the inequalities 

w, (Tt %, rl) > @Jr1 > h, (z I L q), where Hz is continuous in a and a continuous 

function & (7, g, q) is positive for IJ <c ~!7 (z, E), c < $,u , are fuifflIed in Q. 

Proof. We shall construct functions V and V, satisfying the conditions of Lemma I. 

Let $ (7, c, TJ) b e a function constructed in the proof of Lemma 2, and let ‘p (s) be a 

function twice differentiable when s 30, equal to 3 - es when O,C S< K and such, that 

1 <:cp (s) < 3 for 811 S, I cp’ I< 3, 1 cp” ! < 3. 

Let also V == *u%&‘-‘4 and V, = M;pt (piq ) &. We shall show that positive constants 

nt, M, zt, a, pi, p and a number to > 0 can be chosen independent of n and such, that 

when 1; ),wrz-t ,> V for t\<co. we also have VI hw” _> V for t$ to. Let us consider 

I,, (V). We have 

1, (I‘) = vIu7L-ln~~le~u~-uoI(~11-1 -p,t=w”-l (vm3,e-aF - (‘& - p,> 

2, me -a4 (vmcyle-xr --yd - P.r > 0 

for sufficiently large a, and under the assumption that ewe > % . Further 

I,, (VI) = - vt~*t l.$@,$i --u> ‘l--l~.O --- p.f -< me-“’ f- vhf&e B 
- 7.0) - RI. < 0, 

if ,& is sufficientIy farge and e -3 >/K . Let us now choose /3 7 0 so as to fulfill the 

inequality L, (V,) < 0. We have 

It can easily be seen that W ” *G --- 1 when /jLq 5 I/._,. By the previous assumption 
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wn-l>, m$e-aL, where $ is fixed, while m is found from the condition that ~JL$ cqo, 

and e -af >,L/r when E\< ca by virtue of the choice of &. Consequently /!?t can be chosen 

large enough to ensure that L, (V,) <0 when &q< %. Further, we shall choose (j > 0 

large enough to ensure that Ls (V,) < 0 also when 6,~ >/%. This is permissible, since the 

second term of (11) can be made arbitrarily large for sufficiently large 6, provided 

q &% & . Suitable choice of M leads to the condition V, >,wn being fulfilled when 7= 0 

and c= 0. By Lemma 1 we have w n 6 V, everywhere in R when [ < 60. Let us now don- 

sider Ln (v). We have 

L, (V) -z v (Mu-t)2 l$,n!ne-~~ - ml&e-*t + ~!+“-a~ - rp>‘I#te-z~ t p,g~VLa-~~ 

Let a,r),(l and e-d 3%. Then 

L, (V) > v~~~sur2e3”1’ ec3ri, -f- pXaledllie-ai I,( > 0 

for sufficiently large a,, since by the previous assumption, ~u-~>, nzll,e?. 

Let 1 /ox <q < U - 6,. Then L, (v) > 0, since by the previous assumption 

0 f w n-1 < MS, (&q) eP4 qrn$aeWti can be made arbitrarily large provided 01 is 

sufficiently large, otherwise when 1 / ~1 <q < U (t , 5) - 6, function II, h a0 > 0, 

while the remaining terms in the expression for L,(V) are uniformly bounded in n. When 

U@, E)-~<<otwehave 

L, (V) = me-Q6 [Y(w”-‘)% (k - 1) (U --yI )k-2 - k (27 - q)k-‘U T - 
- qk (U - q)k-‘Ut - pxk (?I - v)“-’ + clq (U - q)“] 

Using Bernoulli’s law in the manner employed in the proof of Lemma 2 we obtain, that 

L, fv) > 0 for U - q < &if u is sufficiently large. From this it follows that when 0 6 t< ,$a 

and & is chosen so that eVa if0 = % hen Ln (V > 0 in fz. Since m was chosen so that the 

inequality V,C w” is true for 7=0 and [= 0 we have, by Lemma 1, w” >,m$ee-af for 

44 & and for all 7. This proves Lemma 3, since we can safely assume that I; <w o < rrI. 

In the following we shall only consider such regions of n in which either to,< 7. or 

x0<<* 

To obtain the estimates of first and second order derivatives of wn, we shall prove 

the Lemmas 4 and 5. We shall introduce in (a), (6) and (9) a new function W” = wuea~, 

where u > 0 is a constant which will be specified later, We have 
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We &all aaemne that H" is defined in fl, while u0 and p, are additionally defined for 

q > 0 SO, that they are equal to zero when ‘f > 8, where 8, = H ruin U (7, 0, are independent 

of 7 when v < !4 8, and are sufficiently smooth for all 71, and that X (q) = 1 when 77 < % & 

and X (7) = 0 when q >,a,. Obviously Iy” V=Hn whenq=O. 

Lsmma 4. Constants Ka and K1 can be chosen independent of n and such, that 

when q = 0, and 

L,” (ah) + R”@?l > 0 

in fz where R” is a function of wn-t and its first and second order derivatives. 

Proof. Let us consider &D, / r?q when q = 0. We have 

8% 

(13) 

- =2W,*W,;+ 2W;W,~+W,~(W,*-2Hn)+ W,,n(W,,;-22N,fl)+~1 
all 

Using the boundary condition I;y,* - P = 0 when 17 = 0, we obtain 

a@, 7 = 2wTn~,* + 2w$!I; - 2HnHQn + KI 
dq 

By Lemmas 2 and 3, the inequalities v & h, > 0 hold when 7 = 0, and we have 

Let us use the conditions IV” +P = 0 to define W n and W"-'. We shall find, that 

H"H" depends only on I", W"-' and I"" 

Cons~qnent~y, J2HnIf8” I < X 

and is therefore uniformly bounded in n. 

a and Ka is independent of n. Estimating WPffrn and 

WE” HE” we obtain, for q = 0, 

Choosing u > 0 independent of n and such that 

we obtain 

Here K, is independent of n. Analogously we have 

and, 

W;*H;>q(w,n)2--(W;l-1)‘-K4, 
1 PXE T+__ 1 

2 

K4> max - 
a vwn- l 

for q = 0, 

(Kr, = K2 + 2Ka f 2K4) 
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Since W” &I” = 0 implies that IV” (Wn - 2H”) is nniformly bounded in n when 
‘I t7 

r~ L-J 0, we can write that 

Here K, is a constant independent of R . Let us choose Ki > KS. Than, we can easily 

see that when q = 0 B(D, / BII ,,a(& -~/.@I$+~, which is precisely what was reqnired 

to prove. Choosing a suitable value for I( 0, we can also assume that a,, >, ] in 0. 

Let us now consider L.,,O (0,). When I) >8,, H” m 0. Therefore, for such q 

On=O,*m (wTn)2 + f wp + WyY -I- Ko f Kill 

Applying to &e (p) + gnp =: O the operator 

a 7% a 
2w= z + 2wr$ 

a 
z + 2wgn q 

we obtain 

v (P1)2 OGnfi -O(Dn; - rlOn; + P0,; + P(DI, - 2v (rP1)2 {(W,“, )S + (W&2 + 

+ (WGi)z) + t2v (w n-l t,” w~~w~n + 2v (U;R_’ ~~w~~w~n i- 2v (u+-l ,t W*“,W,“I -I- 

+ [- 2wEnW,” -t_ 2Aan (W,,“,” + 2AERWnnWcn + 2ATnW,“WTn + (141 

+ 2W” (B$W,,” + Bc*Wen + BSnWTn)] - Bn (Q + If,,) - A%$ = 0 

Let us estimate the upper bonnd of the terms I, contained in the ffrst set of square 

parentheses of (14) 

rr< Rl f(WT?y -/- (W,“)2 + (wTnl’] + ~(I(wn-l~,zl~ + Ifwn-“>~212 + I(wn-1),812) mg2 

where RI is some constant. The following inequality (see [S]) is valid for the fanction q (z) 

which is nonnegative and which possesses bounded second derivatives for all values of x 

(q&e < 2 (max /gzs It 4 (15) 

Function (w”-‘)~ cau be extended to embrace all the values of any of the independent 

variables in such a manner, that it will be nonnegative, bounded, and the modulus of its 

second derivative will not exceed the maximnm valne of the modulus of the second derfv- 

ative of (w s-V. Hence, 

g { [(wn-1)52]2 + I(!+)$]* _t [(tP-l);le} (WJ2 B v (rF)” (W$P 

provided RX is sufficiently large. The latter depends on the second derivatives of (t~~-l)~, 

Terms Ia contained in the remaining set of sqnare parentheses can, with help of the fne- 

quality 2ab < a1 + b’, ba estimated from above by m”x”,; of the expression R &,* fK,, 
where R, depends on the first order derivatives of w , while K, is independent of n. 

Hence, for ‘f > $ where Ha = 0, we have 

-&“(cD,)-+-Rs0,+Ks),O when l;,“(Os)+AnO,&O (16) 

where & is independent of a, while R * depends on ffrst and second derivatives of w n--i, 

To obtain the estimates of _LR” (0,) in a when q g 8, we must, in additfon, find 
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x (-2~~” H”). We have 

-b 2av (w~-~)~ Wnnx’ 
I 

_t- 4v (wnml)* W1;“,HQn 

Since by Lemmas 2 and 3 we have (w n-1)z > ye > 0 when qd &, terms I, from (14) and 

the term ~H”u (uI~-‘)~ W” 
II ?‘I 

in the expression for L,*(- 2Wq”Hn), can be estimated with 

help of the inequality 
oi3 

‘ub < -i;- + hb’ 

where h > 0 in an arbitrary number. We have 

zr + 21Pv (tP1 @V,; d ‘lavro (‘CY$Y -I- M&l -t. &l 

where R, depends on the first derivatives of tu’-t and Ra is independent of n. From (14) and 

(17) it follows, that, when r,~< 8, , L,o(@,t) + RS an + Re >O, where RS and RI are depend- 

et on ma-t and its first and second derivatives. 

Since @n > 1, R,Qh >/ R,, , Therefore Lno (@,) +R nU& >, 0 in fi, Q.E.D. In order to 

estimate second order derivatives of u) s in Q, we shall now consider the function 

FYI = (K:)2 + (&V i- (W$ + w,: (WC; - 2H;) + 

-f- WA Vr”, - =J?) + g (11) <Kl!)” + N* + N,rl 

where No and N, are some constants, and a smooth function g (7) is such, that g (0) = 0, 

g’(O)=O,g>Owhen~>Oandg(~)=lwhen~>,&. 

L emmo 5. Constants No and NZ dependent only on the first order derivatives of w”, wa-r 

and w ‘-’ can be chosen such, that 

3F 
-- n >aF,--$FF,_, 

art 
when q--:0 (18) 

Lno (F,,) + C”F, -j- N2 > 0 in Q (19) 

where N, depends on the first order derivatives of w “, w ‘-’ and w n--2 only, while C” is 

dependent on wn-’ and its first and second order derivatives. 

Proof. In the following we shall denote by Ci the constants dependent on the maxima 

of the moduli of tun-t and of its first and second order derivatives, while N1 will denote 

constants dependent only on the maxima of the moduli of first order derivatives of w”, w n-1 

and w n-2 . We shall choose No > 1 such, that Fn > 1 in fz. 

Let us consider dF,/$ when 9 = 0. Using the boundary condition WG - Ha = 0 when 

g = 0, we obtain 

aF, 

arl 
_II 21f’,:TY,;, + 21T’$IBi?!, -1.2lT’+?$V& - 2rzS)1Ht; - “ir$l;; m:-. !I’, 

Terms H”Hinn and Hen If,,,” have au upper bound dependent on first order derivatives c L) 
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of wn, tnn-t and UJ”““~, since second order derivatives of these functions containing the 

differentials with respect to q can, with help of the condition II’,?; - P= 0, be expressed 

in terms of first order derivatives. Let us now estimate 

Choice of aimplies that 

-gj- >, a I(w71:)3 +- w,;,s -H~~.$)sl - $- [fW,3-1)*+(Wg;-1)Z + (W~-‘)~l c Nt - N4 

Since W,; (Wet - 2ff3 + W+“n (WV,” - 2W$) by virtue of the condition W” - H” = 0, 

q = 0 depends on first order derivatives of w”, fl-’ and wnMa only, we can write 

+&aF&F,_,-tN+Cj 

Let N f = iVI . Then, for q = 0, we obviously have 

ap?% 
~>,aFn-~P,_I 

Let us now consider &“(F’& Let Fn* denote the snm 

(W$,” + (W,;P + F$)* + (WC;,)” + tW,“,P + g (W,,;Y + No + N~rl 

Since Hn = 0 and g (qf = 1 when q > 8, we have, for such q i F,* = F,. Applying &e 

operator 
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+ 4AEnWzcW& + 2AcnW,,W$ + 2ATnW;&‘E + 2 A;W3$, + 2 A,,n (W,“,)? + 

+ 2ATnW;TW;,, + 2A$ (W;J + 4g<4,n(W;,,)2 + P (B’W”)) - AnNl = 0 

We shall first consider the part of f-l in which q< 8,. By Lemmas 2 and 3, we hsve 

ft~~-r)~hy u> 0 when q-<&. Th erefore, we can use the equation &e (Wn) + J.PFp = 0 

together with its derivative with respect to ;I, to express the derivatives W” 
TV 

and I” 
r17717 

for t) ,< $ contained in the curly parentheses in (20). as a linear combination of first and 

second order derivatives of W” containing not more than one differentiation with respect 

to q. Coefficients of these derivatives will depend on first order derivatives of wn”. 

After such a substitution, terms contained within the curly parentheses will consist only 

of the first and second order derivatives of W ‘. Let us find the upper bound of these terms, 

using 
2ab < aa -!- b2 

(211 

From (20) we obtain 
Ln*(F,,*) + C$‘,* + C, + Nu>, 0 

Here N, depends only on the maxima of the moduli of first order derivatives of wn, 

wn-t and w’-‘. Since F ,,* >/ 1 due to the choice of No, we have, for ~4 & 

&,,o(F,‘) + C,Fn* + Na > 0 (22) 

To obtain the estimate for Lm(Fn) when q\< S,, we must first estimate 

L,” (- 2w;$Qs - 2W&?IE~) 

We have 

- (BW’&, - .4yqWan - A$W;,, - A,nW;,] + 

We shall now utilise the equation Lu” (W”) + B”Wn = 0, to replace, in the above 

expression, the second and third derivatives of W” containing more than one differentiation 

with wspect to q, with the first and second order derivatives of W” containing not more 

than one differentiation with respect to 7. The following expression 

includes the first and second order derivatives of Wn-’ and a third order derivative of the 

type W&: . The latter can be expressed in terms of first and second order derivatives of 
w”- 1 and first order derivatives of wnmz , using the equation obtained by differentiation 

of Lcl (WnS1) + BnvlWndl = 0 with respect to T. L~o~~~‘~~~~~~) is obtained in the 

analogous manner. Use of inequality of the type of (21). leads to 

.L,,‘(- 2W,n,HTn- 2W&,HE”) + Cd’,* + N, >O 
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for r~ < $. Last inequality together with (22), gives 

Since 

we have, for 9 .$ a,, L,,Q (F,) + CSF~ -k NW >, 0, which completes the proof. 

Let tts now consider &“(FFn) for ?>/I&. For these values of of we have F, = Fnf 

and g fq) = 1. Terms within the curly parentheses in (20) containing third order derivatives 

of W” can be estimated using the inequality (15) in the manner used to estimate the terms 

1, in (14). Use of inequality of the type (21) on the remaining terms of the parenthesis leads 

to 

Theorem 1. First aud second order derivatives of the solution w” of the problem (8), 

(6) and (9) are uniformly bounded in n on Q when 7,< 71, where 7r > 0 is a number depeud- 

ing on parameters of the problem (1) to (3). 

Proof. We shall show that there exist numbers M,, MP and Y1 > 0 such, that when 

~~~M,~dF~~M~whenT,<T~and~t~n-l,then~~~M,aud F,,<M,whenT,(Tr. 

By Lemma 4, we have Lmo (@,) +R “On >, 0, where R” depends on wn-’ and its first 

and second derivatives. 

Let us consider the function CD,1 = Q,e-‘+ _ Constant y > 0 appearing in it will be 

selected later. We have J&Q (Q*t) -i- (R 7L -_Y ) (IQ > 0 in a. We shall choose y de- 

pendent on M, and nS, and such, that R* - r < - 1 in @, i.e. in 9 when T< T, . Then 

QD,t cannot assume its greatest value within 81, nor when [= x0, 7= 7r or when 

?‘I = u (T, 6). If U&*assumes its greatest value when 7= 0 or when [= 0, then 

@,I = QD,c-y’ 6 dp, <K ra, where K,a is independent of n and is defined by the para- 

meters of the problem (8). (6) , and (9) only. If, on the other hand, mnl assnmes its greatest 

value at some point wheu ?I = 0, then at this point S&r / &I < 0 and from (12) it follows 

that (D$ < r/,g?~_I, i.e. #,a <l/SMt- Therefore we have 

@sr < max (t/,3&K 101 in 62 when% \<xz; CD, d max {rfsMr,K ~01 ey” 

Let 71 be such, that cyf* = 2. If we assume that Al, = 2X,,, then fpn ,< ,g, wbeu 

T,( Tr . Let US ROW consider Fn. By Lemma 5, we have 

L,,*(F,)i-C1F,fN,>O in 62 

where C” depends on first and second derivatives of w”-’ and N1 depends on first de- 

rivatives of Up, w ‘-t and w”-‘. Let F$ = FnewYzf. Then, we have 

Lo, @‘,,I) + (Cn -_Y J Frill > - No-“” > - fig in B 

Let US choose y1 3 0 dependent on M, and Mr so, that C --y I6 - i in Qr, i.e. in 

a when T,< 71. Then, if Fi assumes its greatest value within Q’ either when T= 7, or 
when [=x0 or q= U (T, f), then Frill < N, (MI). 

If the function Fi assumes its greatest value when T=c 0 when t= 0, then 

Fd = Pse-v” <Fs g N,, (MI), where NIa depends on Mr. If, on the other hand, F,’ 
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assumes its greatest value when 17 = 0, then by Lemma 5 we have at the point of maximum 

of F; 

and F,,’ <ll,F,_~’ <llrFn_~ e~Y’S<rlzM~. Hence we have 

F,,l < max (l/r Ma, Nr,, Nz} in Q?, Frr < max {‘lzM,, N12, N,} e”” 

Let 7a be such, that eYrr,S = 2. We shall take max [2N1r, 2Nr1 as Mr. Then F, ,(M, 

when 7,< 7r and T,( TV. Choice of 7r and 7r depends on the constants M, and Mr given 

previously and defined by the parameters of the problem (1) to (3). 

It can be assumed that w” is selected so, that $,,< M, and F,,< M, . It follows that an 

and Fn are uniformly bounded in n when ‘F < min {r,, sa} = zr. From the boundedness of 

0s and F, in n, the boundedness of first and second order derivatives of w” follows and 

this proves the theorem. 

Theorem 2. First and second order derivatives of the solution wn of the problem (a), (6) 

and (9) are uniformly bounded in n over fl when g,< e1 where & is a number dependent only 

on the parameters of the problem (1) to (3) and where &< 6. 

Proof. We shall show that there exist numbers Mr , Ma and [r > 0 such, that if @@ ,< ,&fr 

~dF~~M,when5d5,andPSn- 1, then an ,< M, and Fnd M, when [< & . 

By Lemma 4 we have x (U$J $ R ‘Q-I& > 0, where R” depends on tun’t and its 

first and second derivatives. Let On = QnreeEql_(&~) , where ‘pr (s) is a smooth function 

defined by the equality ~1 (a) = 2 --l/,e’ for s 6 In 3/2 and is such, that 1 <<cpr < ‘/a 

for all s ; /3 and & are some positive constants which shall be chosen later. We have 

(23) 

L,O ((D,‘) + 2v (wn-1)” 81 $ a)& + (R” 
‘PI’ 

- rip + A% - + Y (w”-1)3 p13 q&) OnI > 0 
91 

If Bltl < In 3/3, then -31, <ql’ < -Ill, (p1” < -‘I,. By Lemma 3 the inequality 

(w n-t)a >/v a > 0 is true for r~ ,< 8, provided x0 & to. 

Let q< &-r ln*/a andr,r\(&. Th en, constant pr can be selected so, that when 

[C & , the coefficient of a,’ in (23) satisfies the inequality 

In the region 11 > min {a,, /&-I In 3/2} the above inequality will be fulfilled if B > 0 

is chosen sufficiently large. (Obviously, 6 depends on M, and Mr). Then, by (23). when 

66 & the function a,’ cannot assume its greatest value inside a when 7= in or t= & 

or when r~ = II (7. 6). 

If a,’ assumes its greatest value when 7= 0 or when t= 0, then 

% 
q+cple -34 < CD, < Ku 

where K,, is independent of n since a,, can be expressed in terms of w,,, w1 and their 

derivatives when 7=: 0 and t= 0. 

If, on the other hand, a,’ assumes the greatest value when T) = 0, then at this point 

&I/ &l < 0 and from (12) it follows, that 
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by virtue of previous assumption. Consequently, we have 

atut Q max 
i 
$ Ml, Kll 

I 
in Q when E<&, iD, < max 

Since ‘pl @tq) < */et we have ePfrpl (prs) d 2, if ,@t < ?3. Let us choose & 

from the condition ,@tz -_ 4/v Then 

@n < max {MI, 2K *rl when E d & 

If we now aseiume that M, = 2K,, , then @,, 4 M, when c< 6. where 6 depends on M1 

and Ma. Let US now consider F,, By Lemma 5 we have 

L,“(F.)-l-CnF,>-N, in Q whenZ<& 

Let Fn =Fu1cp1(&r?l)es3i , where (pr (s) is a function defined previously. We have 

If fiaq f ln r/e, then -31, <q~r’ Q --t/e, fplrr < --‘/B, and 1 <q, < Y,. By Lemma 

3 we have (W ‘+I)2 >/ y. > 0 when ‘I< 8,. Let q < min {a,, @e-l In 3/z:. For such values of 

q, we can choose & such, that the coefficient of Fi in (24) satisfies the inequality 

Cn - t& + A’& $ + v (w+~)* p12 5$ < - 1 

If B, ia sufficiently large, then this inequality will be satisfied in the region 

rl > min (Se, Be-1 In Y,j. Obviously, & depends on Mt and M, . Following the reasoning 

adopted in the proof of Theorem 1, we obtain 

Fh < max P/s Mz, N,, N,,) in Q when E < & 

where N,, depends on M, and where N,, = max Fn when 7= 0 and [= 0. We have 

Fn < max P/% M,, N,, N,,) max Ies,‘eqI #&q)l < max {AZ,, ZN,, 2N,,; 

if &%pl (&q) < 2 and e-gR< Y 3’ Let us choose Me = mas {ZN,,ZN,,j and let & 

be given by es” = *Iv Then Fn ,< Ma when 5s & where &,r = min {Es, &I. 

Boundedness of an and F, infers the uniform boundedness in n of first and second 

derivatives of to”. 

Theorem 3. Functions w” converge uniformly in 0 to the function to, which is a solu- 

tion of the problem (5) to (71, provided that either to\< Tk or x0 < 5;. 

Proof. We have shown in Theorems 1 and 2 that the first and second order derivatives 

of XI” in 0 are uniformly bounded in n when to ,< +rz or ro< & . We shall now prove that wn 

converge in such a region of a, uniformly. For V” =wu -_zD+-~ , we have the equation 
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v* It* = 0, v” I&(’ = 0, 9 In_Lr(r*Q _I- ” (vmn-‘vll* - V@V n-l --t Vlfi~~-*vn- l )ri=o = 0 

Let OS consider a function V: such, that u* = ear+Bn z:tn. We have 

v (ms-l)a t& - VI: - rjvt; + p,v,; + VUI,~’ (&J-l + u?) vln-l + 
(25) 

+ 2v (w”-r)r pvr; -t (v (UP’)” p” + p,p - a) u1u = 0 

We shall choose the constant p <O such, that in the boundary condition for v1 when 

??=O 

vto*-‘v,; + pvlun-%,n -.I- (z:w,=-l- Vu) vtn-1 = 0 

the coefficients of UT and vIn-* satisfy the inequaIity 

(26) 

max]vw,n-l - z~,l< qvlfilmin wn-l(r, LO), 9<1 

Having established /? , we shall now choose u > 0 such, that 

maxlvu),.,n-l(,n-l +w “-z)l<q(u -maxlY(2U~-1)ZBa+rnxBl) 

Then, if Ius\ attains its greatest value at some internal or boundary point of Q, from 

(25) and (26) it follows that max j uln / < q max j vl”-‘I, i.e. sum of the series 

v,l i- “12 + . . . -t Uln + . . . , partial sums of which are equal to ~ue-~~-~“, is smaller 

than the sum of the geometrical progression, and is, therefore, uniformly convergent. The 

bonndedness of w” and its first and second derivatives implies aniform convergence of all 

first derivatives of w” as n -, DO. From (8) it follows that w” also converge uniformly as 

n -* ~0, provided that q < U (r , 5) - da, where 8, > 0 is arbitrary. 

Thas we have shown that solution of the problem (5) to (7) exists in G if z,, or to are 

sufficiently small and, provided that soiution of the problem (81, (6) and (9) exists. 

We shall now show one of the methods of constructing tu”. (We should note that 

analogous methods were utilised in investigation of linear equations of the type (8) in [5]). 

Below we ehall give a boundary problem for an elliptic equation in a special region, the 

solutions wen of which converge uniformly to un as E -> 0. A corresponding boundary 

problem for a parabolic equation can be constructed in the analogoas manner. 

Let G be an infinitely differentiable bounded region in the [q-plane such, that a 

cylinder [0, tu] x G contains fi and the boundary cr of G contains a segment [ - 28. xe+2a] 

of the t-axis, where 8 > 0 is a small number. 

We shall assume that in some vicinity of the point A of intersection of (T with the 

straight line t= 0, (I lies on the straight line 17 = qI = const. Let us consider a singly 

connected infinitely differentiable region Q whose boundary S coincides with the cylinder 

[-I, b + 11 x G.when - 1 ,< 74 to + I, Q being interior to the cylinder t-2, r,, + Z] x 6. 

We shall denote by ft, these points of Q, for which either ~>,0 and b&O, or 7>,ta. Let 

US also extend smoothly the coefficient p, from (8) and the functions uu and px from (9), to 

all values of eand 7. We shall denote by S, the boundary {T = 0, 0 < E < x,,, 

O<q<u(O,t)j fh 0 t em3ion Q, S, = (0 \<-c < t,, 5 = 0, 0 < q < 
CT IT, 0)) and S, = {0 < T < t,, 0 < 5 < x0, q = 0). 

We shall also assume that a smooth function ti exists, defined in Q - Ql and satis- 

fying the conditiona 
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w* Iszo = wo on Sl, w* IEzO = WI on sa 
L (w*) = 0 (E”) near S, when [GO and T>/O 

L (w*) = 0 (f4) near S, when t>/ 0 and T,< 0 

1 (w*) = 0 (E”) on S near the segment [0, CJ of the %axis 

1 (w*) = 0 (‘t”) on S near the segment [0, J of the [-axis 

It can he assumed that w+ has continuous sixth order derivatives in the closed region 

Q - G and is an infinitely differentiable function outside some neighborhood of the 

boundaries S, and S, of the region n. Such a function UP can be constructed if wa , w1 , vu 

and p, are sufficiently smooth and if, apart from that, wa and w1 satisfy the conditions,on 

the T, & and q-axes, of the problem (5) to (7). 

For example, W+ cm be constructed as follows. We shall assume, that in the vicinity 

of S, when ~$4 0 and 7>,0, 

Here derivatives of w with respect to t when [= 0, can be found from (5) and from the 

equations obtained from it by differentiation with respect to 5 under the condition that 

w = w1 when [= 0. When T,< 0 and [>,O near the boundary S, of a, function I@ can be 

found from 

aw w* =wo-l-‘G~ s=. + . . . +p\ ) m>,4 
TCO 

(28) 

where derivatives of w with respect to T when T = 0 can be found from (5) and from the 

equations obtained from it by differentiation with respect to T, provided that w = wa when 

T= 0. It is easy to see that the function ur+ given by (27) and (28) near the boundary of fl 

lying on the planes T= 0 and [= 0 and extended in an arbitrary smooth manner into the 

remaining part of the region Q - at, satisfies the imposed conditions provided that wa and 

w1 are sufficiently smooth and fulfill the conditions of compatibility on the T-, [- and 

q-axes. When constructing the functions w” satisfying Equation (8) and conditions (6) and 

(9), we shall use Up extended in an arbitrary smooth manner to C,12,, as w”. We shall assume 

that the function wn-t possessing bounded derivatives of the fourth order in Q which is a 

solution of (a), (6) and (9) in a is already constructed and we shall try to determine w”. 

Itwillbeshownthatwn=w*inQ-~,ifwn~’=w*inQ-~2,.Leto~~~,~~where 

qs is a segment [-28, xo + 281 of the t-axis and let St =I-1, to + Ilog. We shall 

consider the operator 

LE (w) s E (L!h + WEE + ub,) + alwss + afltf + asen + v (wR-1)E2wfi,n - 
-us - qw~ + (pJswn - 2 (a, + e) w 

in Q. Here E > 0, the infinitely differentiable functions al, o, and a3 are positive when 

T< - % and when T > &-, -k 6, a, is also positive in the &neighborhood of S, while 

O, is positive everywhere in this neighborhood except at the points lying on the plane 

c= 0 when 0 < z < .&. At the remaining points of Q, functions al, C+ and at are equal 
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to zero. We choose 6 small enough to eusure that al, a, and a3 are equal to zero in n f’P)_ 

will denote the mean value of I_!$ within a circIe of radius E , where a positive, infinitely 

IiifferentiabIe kernel is used in the averaging process. 

Consider, in Q , a boundary problem for the elliptic equation 

I*E(U,) - (ii), (29) 

with the following boundary condition on S 

(301 

where n is a vector normal to S. Function f appearing in (29). is defined in Q thus: 

f = I, (w”) + ap,,~~ + spy” + u&9,,* - 2ap* ‘, 

in Q - !&, /= 0 in Sl and is an arbitrary smooth continuation of this function (with bounded 

fourth order derivatives) in the remainder of Q. Function F is 

Here y is the intersection of S with the boundary of Q - a. On the remainder of S, 

function F appearing in (30) will be an arbitrary smooth continuation of F given on S, and 

Y* 

Obviously it can be assumed by virtue of the properties of UP , that function f has, in 

Q , bounded derivatives of up to and including the fourth order and is infinitely differ- 

entiable outside the ~-neighborhood of fi, while f: has bounded fourth order derivatives in 

some neighborhood of So and is infinitely differentiable on the remainder of S. The boundary 

problem (29) and (30) has a unique solution UP in Q, and since the boundary of Q, 

coefficients of the equation (29) and the right-hand sides in (29) and (301 are infinitely 

differentiable, it follows that w”” is an infinitely differentiable fmrction in the closure of 

Q (see e.g. [6] 1. U ‘q nt ueness of the solution to the problem (29) and (30) folIows from the 

maximum principle [7]. We shall now show that WE* and their derivatives up to and includ- 

ing the fourth order, are uniformly bounded in E. 

Lemma 6. Solution UP” of the problem (29) and (30) in the region Q, are unifo~ly 

bounded in E. 

Proof. Let us make a substitution 
En 

Eo = @l 

i~(29),where~l~~)=lwhen~~-l~d $* (r)=f+b(l+7)awhen 

- 1 et < to -E 2. Constant & > 0 shaft be chosen so, that $,,I d 9’ in Q. Let 

6b (t,, + 3) < 1. For the function T?, we shall have in Q 

and the boundary cpndition on S 

(32) 

(33) 
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Since 

the coefficient of vE in (33) is nonpositive. (Q can be assumed convex when 7 >/ t + 1). 

Coefficient of vE in (31) is negative. Indeed, - (~1 f u f -t (or f s) J,,,’ I$’ d 0, since 

$rS1 / $t < 1, and 9,’ > 0 when ‘r> - 1 and ut > 0 when T < - % . Applying the estimate 

proved in Theorem 4 of [7] to th e solution of the elliptic equation (31) with the boundary 

condition (32) and (33) we shall find, that v’, and consequently wLnl are uniformly bounded 

in E over Q. 

,!,emma 7. Solutions w&u of the problem (29) and (30) possess, in Q, derivatives up to 

and including the fourth order, uniformly bounded in E . 

Proof. We first note that in Q, when 1;rlo+6frlandwhent<-t/,--rl, 

where r, is au arbitrary positive number, equation (29) is uniformly elliptic with respect 

to E, Consequentfy, in agreement with well known a-priori Schauder type estimates (see 

e.g. [6] ), the derivatives of w En of order m are uniformly bounded in 8 with respect to 

their mod& when T > to -t- 8 i- ri and when z < - t/e - rlr provided that wn-t 

possess bounded derivatives of the (m - 11th order in that region. 

Let the point P (5, q) belong to 03 where 141 328 and let As denote its &neighborhood 

on the &-plane. We shall consider the cylinder 

8, = Idi, - rt, to-t 6 + r,]XA,. 

and we shall show, that in this region, w Bn possess derivatives of up to the fourth order 

inclusive, uniformly bounded in e. It can be assumed that in B2, the coefficient a, depends 

only on r, while a, and oa depend only on c and q. We shall pass to new coordinates e ‘ 

and 71’ in As in such a manner, that the boundary belonging to As will transform into a 

straight line q’= 0, while the direction D of the normal to (I will become the direction of 

the q’-axis. Bonndary condition (29) will, in new coordinates which we shall from now on 

denote by 5 and 9, assume the form aw trill 8~ = FE*, 

Let 7’ (7, [, 17) b e a function in B s such, that C!T,@q = FE* when rl= 0. Function 

r zWEu - 2’ satisfies in B3, the equation 

(34) 

M (z) = (8 + uJ r,, - zr + 41,zgj + 2WEn + %zq,+~l~<+ kl - Z(e + Q&Z =je* 

and the condition E 11 = 0 on S. At the same time alla 12 i- .%,a la z $- uz2u 22 > 31, (a 12 -k a$). 

In order to obtain an estimate of first order derivatives of I with respect to t and 7, 

we shall consider the function 

A1 = Ps2 (E,q ) (252 + Zn21 + c,z* + c,q I c2 > 0 

Here constant ct is assumed to be sufficiently large and will be selected later, while 

Ps (k q 1 is a function equal to unity in A,,% and equal to zero in some small region near 

the boundary of Al; not belonging to o. Also, Psn = 0 on cr. 

It is easily seen that &V J &l = C, > 0 on S, consequently AZ cannot assume its 

greatest value on S. If I\’ attains its maximum at the points on the boundary of Bg where 

ps -= 0, then 
Al < max [cXz2 + Carl I < CS 
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where c, is independent of e. It can easily be checked that for sufficiently large value of 

Cl * Y (A*) - Al > - Cd in B3,p rovided c, is sufficiently large. Hence, if hr assumes its 

greatest value inside B3, then A’ < C, . When t = i, + 6 + r, and ‘c = --t/e - rr then 

A1 ia uniformly bounded in E, the fact which we have already established. Since A’ is 

uniformly bounded fn s in B3, therefore zt and tr, are bounded in 

We shall represent (34) as follows(&, 8, < 6). 

M (2) E?z r (2) + Mt (2) = fc*l r (2) = (a + or) r,, - r+ 

It can be assumed that the coefficients of the operator Mt are independent of T. 

ConstquentIy, r (a) satisfies the equation 

M (IY = IJ (lJ + Ml (I?) = r (f,*) in& r-n I,.-, = 0 on $ 

Consider, in B 3t, a function 

(35) 

Using (34) and (35) we easily obtain 
aA” 

M(Az)--AZ>--c7 in Bg,, 37C6>0 

on S, provided c, > 0 is sufficiently large. From this it follows, that & is uniformly 

bounded in E over Bs,, while r (zf, zEf and zgV are uniformly bounded in F over 

pap+ aa < &. From (34) it follows that t ?~ is also uniformly bounded in E. Considering 

the equation for z7 of the form (aI + E) zTt - z+ = I‘ and taking into account the boanded- 

nest3 of r in B& and of zr whenr = --J/r - rr and r = to + 6 + r,, we reach tbe con- 

clttsion that zT is also uniformly bounded with respect to E , in B s2. 

Since the function r‘ (z) is bounded in Bgo and satisfies (35) with the boundary con- 

dition r7, 1 4=. = 0 we can, for r and B32, consider the functions Aa and A’ just as it was 

done for t, and obtain the estimates uniform with respect to E in B,* (6a < &s), for the 

following derivatives 

rz. ra, 1’21, rcn, 1‘(F), rqx* I‘, -%? 

Differentiating (35) with respect to T we obtain, for r,., 

(%+&I rTTy - v - a,') rrs + Ml r,t = (r (f,*)), 

together with the condition l’,rsJn_.o = 0 on S. By definition, sr’ (r ) is small in B3. 

Therefore, equation for rr has the same form as (35). Hence, the derivatives of f? of the 

type 

r7<, IITV, r+s. I?,,,, ia1 i E! rTT7 - (1 - @I’) I‘,,, l’t*,ri, 1’:: 

can be estimated uniformly with respect to E in 23s,, (& < I&), in the manner adopted 

previously for z. Analogous considerations for rT;,, yield, in B$, (a,< a,), uniform in E 

boundedness of derivatives 

r TTF, rrsn, r,,zr, rTra.. , (al -i- E) rTCT7 - (1 - ‘ai) rrlr, r__ _ I’,_+ ..lifi’ . 

from which it follows, that in B3,, third and fourth order derivatives of .r containing more 
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than one differentiation with respect to T and uniformly bounded in e together with first 

derivatives of r (r) with respect to e and TJ , satisfy the Lifschitx condition with respect 

to C$ and T,I, uniformly in e and T. From the Schauder type estimates (oee (61) for the 

elliptic equation, 

Ml (r) = - r (f7 + r (f,? 

it follows, that the derivatives of up to and including third order of r with respect to [ 

and T) are bounded, and satisfy the H”older condition uniformly with respect to e and T 

in B,& (88 < 8,). Schauder type estimates for (34) for I written in the form 

~1 (z) = - r (z) + f,* 

lead to the conclusion, that z possesses derivatives with respect to [ and 7 of up to and 

including the fourth order uniformly bounded in e and eon Bg,, 6, < 86. In this manner 

we have obtained the estimates of derivatives of UP with respect to 7, 4‘ and r) of up to 

and including the fourth order in some neighborhood of the whole of S with exception of 

the neighborhood of So and of the neighborhood o of the intersection of S with the plane 

t= 0, lying in the plane 7 = VI. 

We shall now introduce, in (29) and (30), a new fnnction I, defined by 

w = w&u), ‘Pa = --aq bll -q)/q1, a=c0nst>0 

For I, we shall have the following boundary conditions 

aw 
--aW=(F), when q=O, 

aw 

aq -T&y --w=(F), when tj=?, 

In order to estimate in Q first order derivatives of wcn, we shall consider, in Q, when 

-r/a - rI <z < t,, + 8 + rl (calling thfs region Q,,), a fnnction 

XI= WE*+ W,‘+ W,(W,,--I’)+ k(q), Y=(crW+(F),)x,(11) 

xl(q) = 1 when]tl]<a 
xl(q) = -i wheni’I-_‘b]<a 

%(r1)“0 when 26 <W <ql- 26 
Here k (~1 is a positive function, which shall be specified later. Obviously, on the 

boundary S lying in the plane 7 = 0 or 7 = Wt, the equality 85’ / &1 - Y = 0. holds, 

We have 

axI I -q 1=0 
- 2WEWE,, + 2W,W,, - 2W,,Y, + k’ (0) = 

= 2a [WEa + W,“] - 2YY, + 2Wc (Q + 2W, (Q, + k’ (0) >O 

provided k ‘(0) > 0 is sufficiently large. Analogously, having selected in X, a function 

k (7) so, that k ‘(~3 < 0 and has a sufficiently large modulus, we find that 

ax,/ aq(,,=,,, <O. Approach employed in the proof of Lemma 4, yields 

I? (Xl) + c&ix1 > - CP 

Lot (W) E Le (WI + 2 [(e + a81 + v VW1 ):I ‘Pan % + 

+ ((v (w*-l )p + e + as) [W2an + (WJI + (P& 9~~) W 

Here c8 and cp are independent of e. Let us consider in Q,, 

(36) 
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x,* = x,e+, j3 = const > 0 

If p is sufficiently large, then the coefficient of X,* in (36) is negative and smaller 

than - 1. From (36) it follows that if X1* assumes its greatest value within Qrt, then X1* 

has an upper bound independent of E. Xi* cannot assume its greatest value when 7 = 0 

and q = vi ; on the remainder of the boundary of Q,, function Xi* is uniformly bounded in E 

by virtue of the previous estimates. Estimation uniform in E , of the second and third order 

derivatives of wcn proceeds analogously by considering the functions 

XI = w,: + WCS” +w$ + w,, (wp4 - 2yt) + TV,, (W,, --2Y,)+ g12 (q) Wa,2 i- k (q) 

x3= (XSY + a2 (rl) IW2,,, + w& + w2,,,1+ w,t< (W,e4 - 2Y& -t- 

+ wm vm5 - 2Y,,) + WnL, W,z, - W,,) + k (q) 

gl(‘1)~Owb~~<~/2,g~(~)=Owhen~>~~-~/2,g,(~)=lwhen~,-~>>>8 

Here (X,) ‘is sum of the squares of third derivatives of W with respect to (and T. 

Estimates of A’, and X, can be obtained in the manner similar to that used for X,, but in 

derivation of the inequality of the type of (36) for X, and X,, use should be made of the 

fact, that the coefficient of W 1)1 in (29) is positive when 7 < 6 and 71~ - q < 6, just as in 

the proof of Lemma 5. 

When estimating the fourth order derivatives of W, we should turn our attention to the 

following. Let us consider the function 

where (X,) ‘is the sum of the squares of fourth order derivatives of W not differentiated 

with respect to q and (X,) “is the sum of squares of the fourth order derivatives diffelc 

entiated more than once with respect to 7. 

Function X, includes third order derivatives of Y, hence also of (F)~. Operator LoE(X,) 

can be estimated in terms of Lo’ (YTTz), LoE (YtEE), LoE (YTTt) and L3E (Y,s4), con- 

tainingfifth order derivatives of (F),. Ry virtue of its construction, function F is in- 

finitely differentiable outside the &neighborhood of So and possesses fourth order bounded 

derivatives on S. In the region Q belonging to the &neighborhood of Su, operator ~~~ 

contains second order differentials in tand with the coefficient e of the type e(@ / tic) 

and e(a2/ag2). Since F has fourth order bounded derivatives, therefore fifth order deriv- 

atives of the averaged function (F), are of the order of I/ a. Consequently, application 

of the operator LoE to third order derivatives of (F),gives, as a result, a quantity 

bounded in E. The remainder of the procedure of obtaining the estimate for X, follows that 

employed for X,, X, and X,. Thus we obtain the final result, that the derivatives of UP 

of up to and including the fourth order, are uniformly bounded in E . 

Theorem 4. When E +O, solutions UP” of the problem (29) and (30) in the region Q, 

converge to the solution of w” of the problem (8), (6) and (9) in 9. 

Proof. Ry Lemma 7, the derivatives of w”” of up to and including the fourth order 

are uniformly bounded in E. Consequently, a sequence &k” can be chosen such, that as 
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as 88 -+ 0, functions 8P converge uniformly to w” in Q, together with their derivatives 

of up to and including the third order. Obviously, the limit function W” satisfies, in Q, 

Equation (8) and the bonndary condition (9), when 77 = 0. We shall show now, that 8~” 

satisfies the conditions (6). To do this, we shall have to prove that W” = UJ* in Q - f& * 

Let w” - ti = 2. By definition, we have in Q - !$ 

a& + a&& + asZ,, +v((w’)2zns- Z, - r&z< + pxz, - 2fll.z = 0 

and &z / an = 0 on the part of the boundary of Q - 9, , which belongs to S. Let us consider, 

in Q - &, function Z* defined by 2 = Z* r/r” (7) w h ere I/P is a function constructed in the 

proof of Lemma 6. We shall obtain for Z* an equation in Q - o,, in which the coefficient 

of Z* will be strictly negative in the closure of Q - 0,. Let E (T,& r~) be a smooth function 

in Q such, that ~E/c%I < 0 on S and E > 1. Consider the function Z’ = 2’ (E + c) where c is 

a positive constant. In the equation obtained for Z’ the coefficient of z’ will be negative, 

provided c is sufficiently large. Boundary condition on S is aZl / dn -a,Zr= 0, where 

a1 = -3E / ti > 0. Modulus of Z’ cannot assume its greatest value on S, since at the 

maximum of IZrl on S we have Zi (3Zr / &r) -a I (Zl)’ < 0, which contradicts the boundary 

condition on S. Maximum of jZXj cannot also be achieved inside Q - or, since at the maxi- 

mum of IZ’l we have 2 + l = O,Z;l= 0, Zt” = 0, Z’Z,,‘< O,Z’ZeSrf O,Z’Z~,~~O, 

which contradicts the fact that at this point the equation obtained for Z’ is satisfied. 

It can be shown in the analogous manner that the maximum of \Z’l cannot be reached on 

the bonndary of Q - !& when 7= 0 or t= 0. Consequently Z’ 3 0 in Q - !& from which it 

follows that wn = w* in Q - a,. Hence run /?_o -2~8 and w” i;=u =wr. 

We shall now show that w” = 0 on the surface r~ = U (7, 0. From previous arguments it 

follows, that w” = Owhen7=Oandq=U(O,o ,andalsow”=Owhen~=Oand r~=U(r,Of. 

Since wn-‘= 0 on the surface r~ = U (7, 0, w” satisfies, on this surface, the equation 

wTn + Tj men - p$u,” = 0. We have said before that the direction (I, 7, -- p,) lies on 

the plane tangent to the surface r) = U (7, 0. These directions form a vector field on this 

surface. Integral curves of this field intersect, on continuation to smaller values of T, the 

boundary of the surface either when t= 0 or when 7= 0, and we have there w” = 0. Since 

w” is constant on these integral curves, wn = 0 on the whole of the surface ?I = U (7, 5). 

We should note, that the constructed function w” possesses. in 0, third order derivatives 

satisfying the Lifschitz condition. 

Let us now return to the initial problem (1) to (3). We consider fulfilled all the previous 

assumptions of sufficient smoothness of p, UO, Ur, U,, ~a, and w, and conditions of 

compatibility of these functions, from which the existence of the function w* shown shove, 

can be inferred. 

7’heorem 5. There exists a unique solution of the problem (1) to (3) in the region if, 

provided that either to.$ TX, or x0< 5; where 7% > 0 and & > 0 are some numbers defined by 

the data of the problem (I) to (3). This solution has the following properties: u > 0 when 

y > 0, uY > 0 when y 30, derivatives u/, u,, u!,, and 8yy are continuous and bounded in D. 

Also, $7, / r$ and (U !,!,,, u!, - u,!,“) / zc,,s are bounded in D. 

Proof. Let w be solution of the problem (5) to (7) constructed in the course of proof of 

Theorem 4. We shall determine 8 using the condition w = uy, or 
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(37) 

Since w (t, x, S) > 0 when s < U(t, r) and w = 0 when s = U (t, ~1, then I + U ft. X) 

as y + = and 0 <a < II ft, xf when 0 < y Cm, ufy,o = 0. Conditions ujr=o = I,, and 

&-_o = u1 are also fulfilled by virtue of the conditions wa=u 
oY 

and w,=u 
lY’ 

Function 

defined by (37) has the derivatives ~11 =w , uyy = w,w,and %uU = ~1~~~212 + We u?/~_ 

hrhatives ut and ux are given by 

u u. 

Wf (t, x, s)ds wx(t, 2, s)ds 
ut=--W s wZ(t, 2, s) ’ 

Ux~--W s wZ(t, 2, s) 
0 0 

Let ns put - ut v= - U% - P,x + y/g 
% (38) 

We shall show that u and u given by (37) and (381, satisfy the system (1). Differentiating 

uY 
= w, we obtain 

U Icr = b; + U2ZDn, Uyt = WT + UP* 

consequently v poesesssa a derivative witb respect to y. Diffe~ntf8tion of (38) with res- 

pact to y, yfeldn 

Or qpy + vuyy = - Uty - uu,g - UyUr + vuyyy 

vuutl + $‘Lr + uyy [ 
- ut - uux - Px + vugu 

% I + %y + UUry - vuyyg = 0 (39) 

Fnnctfon w satisfies the eqnation (5). Substitution of JAY for w in (5). yields 

From (40) and (39) it follows, that vuul/ -f- uXuy = 0, i.e. 

ur + vu = 0 (41) 

Equations (38) and (4X) together fotm the system (1). We shall show now, that v 

satisffes the condition vIFo = ~0 (t, z). From condition (7) it fofbws that 

while (38) implfes 

vmfi - P, 
10 = 

W )I n=o 

v ltP=o = ( vp~:~-p~)Jt_* = (vmn;Pz) jl=oI:vo 

Uniqnenese of solution of the problem (1) to (3) follows from the uniqueness of the 

solution of (5) to (7). For, suppose that two sofations w’and w“of the problem (5) to (7) 

exist. Their difference v” = w’ - w” will satisfy 

v (w’)zv*n” - VT” - qV,O + pxv~o + vw,,q” (w’ + w”) V” = 0 (42) 
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in Q, together with the conditions 

V” /&j = 0, V” I<=0 = 0, vv” l&js, 4) = 0, (~~‘~~O - V@W” + WI11)1/1 “)j*=o = 0 

Consider a function V 1 defined by 

where u and p are some positive constants. For V’ from (421, we have 

Y (W’)2vn,1 - V,l - YVcl + Ip, - 2Y (w’)“gr V,l + 

+ [W,,n(W’ + w”) + v (w’)2fi2 - a lvl = 0 

and the conditions 

(43) 

(441 

Vl js=o =O, v1 Is=o = 0, Vl In=U@, r,=O, (W’V,f+(W,II- a,-vpw’)vl) fnl=O = 0 

If cz and p are chosen sufficiently large, then from (44) and (43) it follows that 1 V ‘1 

carnot assume its greatest value on the internal pointe of a, nor on its boundary. Con* 

sequently V’ E 0 end W’E w“in !& which was to be proved. 

Another proof of uniqueness of the solution of (5) to (7) is given in [a]. A continuous 

dependence of the solution w of (5) to (7) on the given functions PI Uo, uo, and u1 can 

be proved in an analogous manner. Behavior of the solution of (5) to (7) and of (1) to (3) 

as t -, m was investigated in [Q]. 

Convergence of finite difference approximations to solutions of Prandtl’e system was 

investigated in [lo]. 
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