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This paper presents the proof of existence of a smooth solution of a system of boundary
layer equations for a plane unsteady flow of viscous incompressible fluid in presence of an
arbitrary injection and removal of the fluid across the boundary.

It is shown that for such flows, a solution of Prandtl’s system always exists for all ¢
near the beginning of flow around the hody and, during the interval 0 ¢ <¢, along the
‘whole length of this body. A method is given of constructing an approximate solution of the
system of Prandtl’s equations of the boundary layer theory, and convergence of these
approximations is proved. A short resumé of results obtained in this paper is given in [1].

We shall consider a system of boundary layer equations for a plane unsteady flow of a
viscous incompressible fluid

Uy + Ul + Uuy = — Px + vuy'ya Uy + v, = O (I)

in the region

DOttty 02z a, 0 <y < oo} (lo < 00, 20 S o0) (1.1)

with the conditions

u ll=0 = Up (.’E, y)7 u |3,=0 = 07 vl'§/=0 = Dy (tv .’I?), u lx:O == Uy (tv y) (2)

lim w(t, z, y)=U(t, x) (3)
Y00

Bernoulli’s law Ut + UU, = — pyconnects the functions p (¢, x} and U (¢, x).

We assume that the density p=1.

[2 and 3] give the derivation of these equations. Prandtl’s system of equations for a
stationary boundary layer is investigated in {4]. Methods which we shall apply in construct-
ing solutions of the problem (1) to (3), can also be used to prove the existence of a solu-
tion of the Prandtl’s system of equations for a stationary boundary layer.

Physical conditions of the problem demand that u > 0 when y > 0 and U (¢, x) > 0.
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952 0.4. Oleinik

We shall assume that 4o > 0 and 4, >0 when ¥ >0;u__ > 0 and 4> 0 when y 2.0. To
prove the existence of a solution to the problem (1) to’(3) in D when #, or x, are restricted
in a manner which will be shown later, we shall introduce new independent variables

T = I, g:x, 'fl":u(t,-l‘ay) (4)
and a new unknown function w = uy. We have
u u,oow, —u, 2 u, u w, U
1y iy ¥ — Yt — e X
wn___,;__’ u’nn'- 3 Ll , w;——uy[‘_ - y wﬁ‘—uyx
u, u, u, }

Differentiation of the first equation of (1) with respect to y and subsequent use of
both equations of (1) to eliminate vy and v, leads to the following expression for w
L(w) = v,y — w. — Nwg + paw, = 0 (5)

Change of independent variables (4) transforms region D into

QUST <t 0K E< 2, 0K < U (x, B}

and conditions on the boundary of D become
w }T:D =Ugy EUW (En ﬂ): w IE=O = Uy EW (T$ T})» w In=U(r, gy = 0 (9

I (w) = vww, — vy — pp, = 0 when 1 =0 @
on the boundary of {}. We shall assume u, and , to be such that w, and w, are sufficiently
smooth fanctions on the corresponding boundary of . Also U (7, £) > 0 for all 7and £.

Solution of the problem (5) to (7) will be obtained as a limit of fanctions w™ as n + s,
given by
Ln (w™) = v @™ 1P wpy —we — g™ + paog” = 0 @)

in (}, where w” satisfy conditions {(6) and

In (™) = v, — vl — pe = 0 (9)
on the boundary 5 =0 of ).

We shall assume that 4, is 2 smooth function satisfying (6) and the condition that
w°> 0 when g<Uir f). Also, we shall assume the existence of such a smooth fanction
Polr, 5 M) inQ, that w39 (0, & M), w; > (v, 0, m) and @ >0 when
7 <U T, £), while at the same time @, = m, (U (t, &) — 1)* for some mg > 0 and
k> 1, provided that U (7, £) ~ 5 <&, where 5, > 0 is a small number.

With the initial assnmption that such solation wn (n = 1, 2, ... ) of the problem (8), (6)
and (9) exists which has continuous derivatives of third order in the closure (I of Q, we
shall show that w” converge to the solution of the problem {(5) to (7), as n + . This will
be followed by a proof of existence of w™ and an approximate method for their construction
will be given. We shall also assume that 2, and x, are finite.

Lemma 1. Let a smooth function ¥ be such that L, (¥) >0 in ( and I, (V) > 0 when
n=0.Let ¥ <w" when 7=0 and £= 0. Also, let "~ !> 0 when ) = 0. Then, V < w®
everywhere in ().

Let a smooth function ¥, be such that L,-,(Vl) <0in, In (V) <0 when =0 and let
V: > w" when T=0 and £=0. Also, let w" = 1> 0 when 7 = 0. Then, ¥, 3> w" everywhere in
Q.
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Proof. L.et us prove its first part first. Consider the difference w" = V=13, We have
Ln (3) =Lp (@®) —Ln N <0, In(2)=1n(®) —In (V) =v w2, 0
Previous conditions imply that z 3.0 when 7=0 and when = 0. Consider the function
zt = ze ", Obviously, z! 3.0 when 7=0 and §=0, and z* <0 when 7 = 0. From this it

follows that z! cannot assume a negative minimum when 7 = 0, since at this point we have
213 0. On the points belonging to {1 we have

Ln(2) = (Ln (1) — 21) € (10)
from which it follows that z* cannot assume a negative minimum on the internal point of
1, nor when §= %o OF T=ty, since at such points 2! =0, z‘{\<0, g 0 and zn n? >0,
from which it follows that L, {z1) — z1 >> 0. Nor can z* assume a negatwe minimum on
the boundary 7 = U (7, £) since we have, on this surface, w™=! = 0 while at the minimum
point 2! we have, provided it can be reached, that when 5= (7, H, - z‘_r... 7 “f +
,sz‘,,7 =0, hence L, (') = 2! > 0. The latter follows from the fact that the vector
(=1, = 7, p,) either lies on the plane tangent to the surface = U (7, £) or, by Bernoulli’s
law, it is orthogonal to the normal vector

Uy +nUE“}|" P = U:+ UU&+ px=0

Hence, 2 >.0 in {} and w" >V in . Remaining part of Lemma 1 is proved in the
analogous manner,

Lemma 2. There exists a constant 7, > 0 such, that for all » and 7€ Ty, the inequalities
H , 8n)>w > hh, £, 1), where H, is continuous in (1 and the function
by (7, &, ) is positive for <" U (x, &), v < 7, and continuous in {2, are fulfilled
in the region (.

Proof. Let us construct the functions V and V, satisfying the conditions of Lemma 1.
We shall define a twice continuously differentiable fanction ¢ (7, £, ) as follows. Let

P = % (am) when n < &, 08 pmin¥ (v, §)
% {s) = ¢ when 0 < s < 1; 1<) <<3 mpE s> 1
$= (v, §)—~—1})kwhenU —_ <8y 0 ayKYP<hwhend, <<V — §
where a, is a small number, Let the functions V and V, be
V = mpe ** {m, a;, & = const > 0)
=M€ —FNE By, B, € M = const> 0)

We shall show that the constants entering V and ¥, can, together with a number
Te > 0, be chosen independent of n and in such a manner, that ¥V wh! LV for 7< Ty,
implies that ¥ < w LV, for T< T,. Let us consider in (V) and I (V,). When e™%" 2%,
we have

In (V) = v imipe™®" — oo™ — pp > me " [vma ™" — p)] — p. >0
In (V) = —v "t MPyeP™ — oo™ — pr < me™™" (— vpMeP™ — v) — p. >0
provided a, > 0 and 3, > 0 are sufficiently large.

Constants m, C, and M shall be chosen accordingly from
Po(v. Em) > mb(r, E1), € — 7> 1, M> max {wou,)
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Let us now choose [3 > 0 such that Ln(Vx) <0in . Taking into account the fact that

wh 1> V= mpe*", we have,
Ly (7)) = — V(™ " PMB2P P — M (€ — &) BT — p MPieP <
K — TV (mpe TR MBRPT - MB + peMBiePT) < 0

provided that 3> 0 was chosen sufficiently large.

Let us now compute L (V). We have

Ly (V) v(w™ 2y tn\pm T ampe T — e — mme TR pamp,e”

Since 0 o™t < M (C — ™) €7, the constant a > 0 can be chosen mdependent of

» and sufficiently 1arge to ensure that L >0in O when U, §) ~ 8, as f 3 min
{as,1}. In the region 3 U (1, &) - where Yr={U- *q) , we have

L, V) = me™ (W™ 12 k(k— 1)U —qp2— kU —mF WU, +a U —q)k—
—nkU —nKU g — pek U —n )k

From Bemoulli’s law it follows that / . +-nU; + px = — (U ~71) UE Therefore

Ly )3 me ™ k(U —n)¥ Uy +a (U —n)k] >
provided a > 0 is sufficiently large. Consequently, conditions of Lemma 1 are fulfilled for
V and ¥y in (1, if 7€ 75 and Ty is such that ¢ ™% =Y, Values of @ and 7, depend only on
the parameters of the problem (5) to (7). Therefore, if ¥, > w® 1> V when T Ty, then all
the conditions of Lemma 1 are fulfilled for ¥ and ¥, and ¥, > w" > V for 7K 7. Since it
can be assumed that these inequalities are also fulfilled for w® at any value of n and
7L Ty, we have ¥V L w" < ¥,, which completes the proof.

Lemma 3. There exists a constant fo > 0 such, that for all n and §\< fn the inequalities
Hy(v, §,m) > w" > hy(s, &, m), where H, is continuous in Q and a continuous
function &, (7, £, 7)) is positive for <7 U (¢, ), E < &, , are fulfilled in Q.

Proof. We shall construct functions ¥ and V, satisfying the conditions of Lemma 1.
Let iy (7, £, ) be a function constructed in the proof of Lemma 2, and let ¢ (s) be a
function twice differentiable when s >0, equal to 3 — e® when 0K s <Y and such, that
1< ()<L 3 forall 5,/ 9" |3, |9"| < 3.

Let also V = mpe™% and ¥, = Mo (B,n) ¢P% We shall show that positive constants
m, M, 21, a, By, p and a number &> 0 can be chosen independent of n and such, that
when ¥, >u? 2V for £ &, we also have Vy >uw™ >V for £ fo. Let us consider
ln (V). We have
g

- Z"0) - p\/>/

Ly (V) = vt imae *—pquo™ ! — pe=w " 1 (vinx e

—al —t?
> me™® (vmage e epg) — pe > 0

for sufficiently large o, and under the assumption that e‘"“’f >4%. Further

I (V) =—ve® erﬁxeBi —w "y pe << me™*% {(— 'VMﬁle — g — P <0,
if B, is sufficiently large and ¢~% >%. Let us now choose B> 0 so as te fulfill the
inequality L (V,) <0. We have

Ly (V) = v ™ ) MPPg" ePs — v MoPe™ - p. Mpp e (1

It can easily be seen that ¢”' <C — 1 when Bm <(1/, By the previous assumption
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Wl > mwe'“i, where i) is fixed, while m is found from the condition that m¥{ <9y,
and e=% > when £ &, by virtue of the choice of &. Consequently 3; can be chosen
large enongh to ensure that L | (V,) <0 when 8,7 %. Further, we shall choose 3>0
large enough to ensure that L (V,) <0 also when 8,7 > %. This is permissible, since the
second term of (11) can be made arbitrarily large for sufficiently large 3, provided
> Y% B, . Suitable choice of ¥ leads to the condition ¥, > w" being fulfilled when 7=0
and £ = 0. By Lemma 1 we have w” £ ¥, everywhere in () when £ { £,. Let us now con-
sider L (V). We have
L, (V)= v (W™ 1y wmnze'“:‘ — mp e L e — nnupie"zz’ + P,:‘Pn"w—az'
Let ;7 <1 and =% > >%. Then
L (V) > vmBa 2™ ¢ 325 L paje® e >0
for sufficiently large Q,, since by the previous assumption, w" ' > mipe %,
Let 1 /oy <9 <U — 8y Then L, (V) > 0, since by the previous assumption
0 w™ ¢ Mo (Bim) eP% nmlﬁae_ag can be made arbitrarily large provided a is
sufficiently large, otherwise when 1 /o, <1} <U (v, &) — §, function Y > a4 > 0,
while the remaining terms in the expression for Ln(V) are uniformly bounded in n. When
U, E) — i < &, » we have
Ly (V) = me™® [v@" )k (k — 1) (U —n)k2 — k(U — )k _ —
— k(U — P70y — p ok (U — )k - an (U — m)k]
Using Bernoulli’s law in the manner employed in the proof of Lemma 2 we obtain, that
L, (V) >0 for U -y < §,if a is sufficiently large. From this it follows that when 0 < £< &,
and & is chosen so that e~%§0 =Y, then L_ (") >0in (. Since m was chosen so that the
inequality ¥ L w" is true for 7=0 and £ = 0 we have, by Lemma 1, w ,ml/le"""f for
£ & and for all 7. This proves Lemma 3, since we can safely assume that V <(w° < V,.
In the following we shall only consider such regions of {} in which either £,.& 7, or
%< .
To obtain the estimates of first and second order derivatives of w’, we shall prove
the Lemmas 4 and 5. We shall introduce in (8), (6) and (9) a new function W" = when
where &0 > 0 is a constant which will be specified later. We have

Lo (") = v (@1 W — W — qW " o (e — 29 (w22 W,
+ (@ (w12 — pal W = O
bn @) = VW"IW " — v W™ W — W™l b ) when n=0
Putting
LoW) = v 12 Wo— Wo — W ++ A™W,, A" = [p,— 2v(un-1)2q)
we obtain ‘

LAW™ + BW" =0,  B"= [o®v(w" ) — ap,]

Let us now consider the function

D= (W0 OV W0 20 K, Ko
(1[“:~zo F oy )
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We shall assume that H” is defined in (), while vy and p, are additionally defined for
7> 0 so, that they are equal to zero when n > 8, where 8, = % min U (T, &), are independent
of 77 when 7 <4 8, and are sufficiently smooth for all 57, and that X () = 1 when <% &,
and X (7) =0 when 5 > §,. Obviously W;; = H" when 5 = 0.

Lemma 4. Constants K, and K, can be chosen independent of n and such, that

v a
> @y — 5 Ony (12)
when 1 =0, and
L,* (®,) + R"®, >0 (13)

in {} where R" is a function of w®? and its first and second order derivatives.

Proof, Let us consider 4®,, / 9y when n=0. We have

P
6ﬂn = 2WTnWT?1 + ZWEnWEZ: + Wﬂ: (W'nn —2H%) 4 W'nn (Wn: - 2H~nn) + £
Using the boundary condition W o — H" = 0 when =0, we obtain

Y
0n‘n — 2W1nHTn + ZWETLHE‘n o 2HﬂH,nn + KI

By Lemmas 2 and 3, the inequalities W » hy>> 0 hold when 5 =0, and we have

1 p W
H'H ”;:(__ oo - _TE__ L awm <n))( WS n)
AN T e * vy

Let us use the conditions W? .. #” =0 to define W™ and W*!, We shall find, that
HPH™ depends only on W™, W' and W"=2 and is therefore uniformly bounded in n.
Consequently, |[2H"H," | < K, and K, is independent of n. Estimating W:"H." and
Wan HE" we obtain, for =0,

1 p P %4 n-1 -
n n n X
W H W [T vO't.' + ’VWJ::‘I - v (W:l—l)g + aW‘tnx (T])J }’

1 Por Py * 1 Py 2 o
>a0vry— o [Tt g - [ S| o= o

Choosing @ > 0 independent of n and such that

1 Dy 2 «
a {V(W"“‘)z] <%

we obtain
o] 1 Yo Py
W, s ——(W M- W — K, Ks > max ’;[ v ]
Here K, is independent of 5. Analogously we have
o 1 gz Px 2
WEnH —‘(Wan)2 — Z‘(W‘;‘"‘l)"’—K«i, Ky> max - [T+VW"_1 J

and, for =0,
QWP (W Pl— —[(WJ‘“‘)? + (W — K+ Ky
(K5 = Ky + 2K3 - 2Ky)

3D,
on
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Since W;; ~ H™ =0 implies that W;; (W; ~ 2H"™) is uniformly bounded in n when
7 =0, we can write that

o
811 > ad, @n,lmKe‘FKl

Here K¢ is a constant independent of n. Let us choose K, > K. Then, we can easily
see that when 1, = 0 80y, / 9 2> a®, —1/3a®,_y, which is precisely what was required
to prove. Choosing a suitable value for K;, we can also assume that ‘I’ >1in .

Let us now consider L;° (®p). When 7 >.8,, H® = 0. Therefore, for such 7

=0 = (W2 4+ (W2 -+ (W, ")+ Ko+ Kim
Applying to L ° (W™) -+ BPW" = () the operator

3 8 )
W 42 g 2, o
we obtain
vt ao, — @ + A", ] + B O, — 2v(@™ 2 (W) + + (Wehe +

+ (W) + [2v (0" 1> W, IW." 4 2v @)Wt 2v () P WL
+[— 2WEnW"? - 2‘4'&“ (Wﬂn)z 42 AEnW“'nWE +2 A,nW.,;“W.,n + (14)
+ 2W7¥ (B“‘"rwnﬂ + BE"Wzn + Btnwtn)] — Bﬂ (Kln + KO)"‘" A“K; =

Let us estimate the upper bound of the terms I, contained in the first set of square
parentheses of (14)

2
O RAW P+ (W) -+ (W) + %;{ ™ 1) 212 + [ 1) PP + (0™ ) J1 (W02

where R, is some conatant. The following inequality (see [S]) is valid for the function ¢ (x)
which is nonnegative and which possesses bounded second derivatives for all values of x

{g<)* < 2 {max (g} ¢ (15)
Function (w™~1)? can be extended to embrace all the values of any of the independent
variables in such a manner, that it will be nonnegative, bounded, and the modulus of its
second derivative will not exceed the maximum value of the modulss of the second derive

ative of (1w~ 1)*, Hence,

-Z—: ([ )PP+ (w2 4 (") 10 (W00 < v (1 (W00

provided R, is sufficiently large. The latter depends on the second derivatives of {wh—1H)3,
Terms I, contaived in the remaining set of square parentheses can, with help of the ine~
quality 2ab < a? + b, be estimated from above by means of the expression R @,* +X,,
where R, depends on the firat order derivatives of wn"l. while K, is independent of n.
Hence, for > &, where H® =0, we have

Lp® (@) +Ry®, +K 3> 0 when Ly,° (@) +R"®, >0 {16)

where X, is independent of n, while R” depends on first and second derivatives of w51,

To obtain the estimates of L,® (®,} in ) when 5 €8, we must, in addition, find
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Ly® (—2W," H"). We have

Ln® (2W “H™) = 2H™L,° (W ") + 2W "Lp° (H™) + 4v (W™ 2 W RH " =

= 20 [— v (™) 2 W T Wt — AW " — B TWT — BYW 1+

an

v (Lo (2 L,:( Wn,)~ax(n)B“W"+aW“L"(x)+

- Zav (w2 Wn"x’] A hv (™ L)2 Wl

Since by Lemmas 2 and 3 we have (w" ™12 > ¥, > 0 when 3£ 8,, terms I, from (14) and

the term 2H "v (w""i):,W;‘m in the expression for L,° (— 2W "H"), can be estimated with

help of the inequality

where > 0 in an arbitrary number. We have
Iy 2H™ (w1) 2 0 Y avro (W 0 + Ra®p + Ko
where R, depends on the first derivatives of w”™! and K, is independent of n. From (14) and

(17) it follows, that, whenng &, , an (‘Dn) + Ry (Dn + Rg >0, where Ry and Rqare depend-
er on w™ ! and its first and second derivatives.

Since @, > 1, R¢®D, > Ry. Therefore Lp° (Op) +R"®, > 0in O, Q.E.D. In order to
estimate second order derivatives of w™ in ), we shall now consider the fanction
Frp= (W2 + (Wed)* + Wag)? + Wiy (Weh — 2H) +
+Wrn( wn— 2H. )+g(n)(Wnn)2+No+N17l
where N; and N, are some constants, and a smooth function g {n) is such, that g (0) =
g°(0)=0,g>0when >0 and g (n) = 1 when > 5,.

Lemma 5. Constants No and N, dependent only on the first order derivatives of 0%, w1

and w2 can be chosen such, that
oF o
—gﬁ’i > oFy— 5 Fpq when 0 =0 (18)
Lno(F7t)+CnFn+N2>O in Q (19)

! and w ™2 only, while C” is

and its first and second order derivatives.

where N, depends on the first order derivatives of w', w™™
dependent on w”-1

Proof. In the {dllowing we shall denote by C‘- the counstants dependent on the maxima

of the moduli of w™! and of its first and second order derivatives, while N, will denote

constants dependent only on the maxima of the moduli of first order derivatives of w™, w1

and w2 . We shall choose Ny > 1 such, that F.>1in (.

Let us consider aFn/an when 7 = 0. Using the boundary condition Wg ~ H™ =0 when

7 =0, we obtain

ik =2 eon T 2WLEIWVLE, 2V W 2, — 200 " H o — 2T - Ny

Terms H;"HM“ and H.:™ H; " have an upper bound dependent on first order derivatives
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of w" w1 and w2, since second order derivatives of these functions containing the

differentials with respect to 7 can, with help of the conditionl[’n" — H"= (» be expressed

in terms of first order derivatives. Let us now estimate

L L P
v yiyn-l v (an—l)z
. Px{ Wit Wty
e LT e 2

]+aW,f}> a (W T —

v owml iy
- 1 r”l)ﬂ' 4 Py —2 Py I/V?‘l 2 Px (Wm—l)z ]
a L vyl v (Wﬂ-l)z v (W“'1)3
L R
T a { V(W”“I)Z] WP — W(W )

Choice of aimplies that
W AW 2 > s (W22 — Vg (W 71 —
Analogous estimates for W Wy, and WaWE. .. sive

o -
o [(W 2R+ (W2 +(WEPR — 5 (WA P (W P -+ (W2 + N —
Since W 2 (W% —2H™) ++ W % (W " — 2H ") by virtne of the condition #* —~ H" =0,

71=0 depends on first order derivatives of w", Wl and w2 only, we can write

QF
S afy, -——-‘—‘”‘ n_l-}-Nl-——Ns

aF,
T >

Let N; =Ng . Then, for 17 =0, we obviously have

aF, a
Hn n >aFfp—5F,

Let us now consider L,°(Fy). Let F n* denote the sum
(W2l (W) o+ (WP + (Weg)* o+ (WP + g (W) + No o+ Nim
Since H” =0 and g () = 1 when > 8, we have, for such 7, F * = F . Applying the
operator

n 0 7 02 n ol n o n a n_‘?,i,
P=2W PPy 2Wez 75 4 2W 5 Frrr -+ 2W¢, 3Eon -+ 2W 3 v on + 2gW .5 pro

to both sides of the equation L,° {W") -+ B"W™ = ( we obtain

VIR g P — W+ ATF L — 20 (™ R W2+ (W) + (W)
+ (W -+ (W2 + g () (W mm)21 + (4w @)W W 4
+ v (2w aW 429 (W) PW W 2y ()W W,
+2v @) E WL WL 2y (@) W W 26 (™ )R WD, W

+ 2v (™ )n2 nEWEﬂ +4g ("t )n Tnn¥V g -+ 2V [(w™? )*3 e T

(@ W+ ("R W, - (w '1>g,1 Byt @2, W
g @R W — v (0" g, (Wh )2 — v (0PI g WRWE — (20)

— 2W2“W?a — 2W£ﬂW&E — 48’ng, P AY) Wt —g, A" (Wi -+ GATWIWE, L+
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+ 4ATW W E, + 247W, WD 4 2ATWEWD 4 2AMWE WD 424 (WP Y +
+ 2AWR W 4 24, (WP )2 4 4g A, (WD 2+ P (B"W™)) — A™N, = 0

We shall first consider the part of () in which 1< ;. By Lemmas 2 and 3, we have
(™12 >y ,> 0 when 7<£8,. Therefore, we can use the equation L,° (W") 4+ By —
together with its derivative with respect to 7, to express the derivatives W and W
for 7 £ &, contained in the curly parentheses in (20), as a linear combination of first and
second order derivatives of W" containing not more than one differentiation with respect
to 7. Coefficients of these derivatives will depend on first order derivatives of w1,
After such a substitution, terms contained within the curly parentheses will consist only
of the first and second order derivatives of W*. Let us find the upper bound of these terms,
using

206 < o+ B
@ (21

From (20) we obtain
Lp°(Fp*) + CF p* + Co -+ Neg 2> 0
Here Ny depends only on the maxima of the moduli of first order derivatives of w”,
w1 and w2, Since Fn* > 1 due to the choice of No, we have, for &4,
Lpe(Fp®*) 4+ CoFp* 4+ Ne > 0 (22)

To obtain the estimate for L,°(Fy) when y<5,, we must first estimate

L, (—2W™ H " —2WE H,")

We have

Lo® (W H M) = La® (W2 H T W2 Ly (H ) 4 20 (0™ Y W2, HT

= HI = @)W, — (") EWh — Y In Wiane + Wi —

n
—(B"WT) AT W AW A W]

Px

o Ygr
+ W?.“ [Ln (—V_> + o’ ((ﬂif’n—l)r) + L WW*:”X)} +2v (1 W?ﬂﬂH‘?ﬂ

We shall now utilise the equation L,° (W") + B"W™ = 0, to replace, in the above
expression, the second and third derivatives of W" containing more than one differentiation
with respect to 77, with the first and second order derivatives of W" containing not more

than one differentiation with respect to 7. The following expression

. Px o Pae Wi
L, L, _
YW1/, YWy (Wl

includes the first and second order derivatives of ¥~}

type W:;i . The latter can be expressed in terms of first and second order derivatives of
Re2

and a third order derivative of the

W™= and first order derivatives of w
of L;_l (W™) + Bo-lWmt =0 with respect to 7. Lp°(Wy,"H") is obtained in the
analogous manner. Use of inequality of the type of (21}, leads to

Lna (_ ZW,?"HT" - 2W§an") + Ct-an* + Na > 0

, using the equation obtained by differentiation
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for 7 € 8,. Last inequality together with (22), gives

Ly (Fyp) + CeFp* + Ng 20
Since
Fp=Fo*—2W2 H"— W H > 2 Fp* —No

we have, for 1< 8,, L° (Fpn) + CeF n -+ N1 2> 0, which completes the proof.

Let us now consider L,°(F,) for 73 5,. For these values of 7 we have F = F,*
and g () = 1. Terms within the curly parentheses in (20) containing third order derxvanves
of W™ can be estimated using the inequality (15) in the manner used to estimate the terms
1, in (14). Use of inequality of the type (21) on the remaining terms of the parenthesis leads
to

L’nO(Fn) + CnFn + Nll 0 when n 63

Theorem 1. First and second order derivatives of the solution w™ of the problem (8),
(6) and (9) are uniformly bounded in n on {) when 7& 7;, where 7; > 0 is a number depend-
ing on parameters of the problem (1) to (3).

Proof. We shall show that there exist numbers M;, M, and 7; > 0 such, that when
(IJ#'<M1 and F KM, when 7 7, and p & n—-1, then O, KM, and F, <M, when T 7.

By Lemma 4, we have L,° (®,) +R"D, > 0, where R" depends on w"~! and its first
and second derivatives.

Let us consider the function ®,1 = @, . Constant ¥ > 0 appearing in it will be
selected later. We have L,° (@) +(R™ —7 ) @p > 0 in (). We shall choose y de-
pendent on M, and M, and such, that A® — y<C — 1 in &% i.e. in @ when 7< 7;. Then
@} cannot assume its greatest value within Q!, nor when E=x,, T=T, or when
1 =U (x,§). H @,lassumes its greatest value when 7=0 or when £=0, then
Dpt = Ope~"" L O <K 4, where K;o is independent of n and is defined by the para-
meters of the problem (8), (6), and (9) only. If, on the other hand, @, 1 assumes its greatest
value at some point when 7 =0, then at this point ®,1 / dn < 0 and from (12} it follows
that O < ig(l)z;d, fe. ©,1 <1/, M, Therefore we have

(Dnl < max {U’.MpK 10} in & when? <7Tgs @, < max {l,ngp 10} Py
Let 7; be such, that €™ = 2. If we assume that ¥, = 2K,,, then (Dn £ M, when
7L T;. Let us now consider F . By Lemma 5, we have

Ly (Fp) - CFp+ N >0 in Q
where C™ depends on first and second derivatives of w1 and N, depends on first de-
rivatives of w” W' and w2 Let F! = F, e ", Then, we have

Lp(Fa)+ (€= DF > — Nye " > — Ny in Q

Let us choose y, > 0 dependent on M; and M, so, that " —y ;< — { in (%, i.e.in

) when 7K 7, . Then, if F} assumes its greatest value within ()? either when 7= 7, or
when £=xo0r = U (T, £), then Fl < Ny (My).

If the function F! assumes its greatest value when 7 =0 when £=0, then
Fplo=Fpe"" CF, < Nyg (M), where Ny, depends on M, . If, on the other hand, F}
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assumes its greatest value when 7 =0, then by Lemma 5 we have at the point of maximum
of F!
n

Zﬁil

OF 1
0> %

and Fl UpFp ' SHF 1 € 7" 1/,Ms. Hence we have

F 0 < max (/; M,, Ny, N3} in Q?, Fpn < max {Y/,My, Ny, N} ¥7
Let 7; be such, that ¢"™ = 2, We shall take max {2Ny;, 2N,} as M, . Then F, <M,
when TL 7; and 7L 7, . Choice of 7; and 7, depends on the constants M, and M, given
previously and defined by the parameters of the problem (1) to (3).
It can be assumed that w®is selected so, that ®, <M, and Fo &< M, . It follows that ‘I’n
and F_ are uniformly bounded in n when T < min {14, 75} = 7;. From the boundedness of

(I)n and F, in n, the boundedness of first and second order derivatives of w" follows and

this proves the theorem.

Theorem 2. First and second order derivatives of the solution w” of the problem (8}, (6)
and (9) are uniformly bounded in n over ) when £ < & where & is a number dependent only
on the parameters of the problem (1) to (3) and where £, £ &.

Proof. We shall show that there exist numbers M, , M, and &, > 0 such, that if <I)“ <M,
andF &M, when {< & and p<n — 1, then O, <M, and F, <M, when £< 4.

By Lemma 4 we have L,° (®,) + R"®, > 0, where R" depends on w®™! and its
first and second derivatives. Let @, = ®,1¢**¢, (B;), where @1 (s) is a smooth function
defined by the equality @; (8) = 2 —1/3¢® for s S In 3/2 and is such, that 1 g, < ¥/,
for all s; B and B, are some positive constants which shall be chosen later. We have

(23)
v (@14 2y @ I 0, 4 (A — gt i T oy e gad) 0 >0
If fin < In%/,, then —3/, g, < —3/5, @y’ << —1/;. By Lemma 3 the inequality
(™) >y ¢> 0 is true for 1< 8, provided % < &.
Let 1< f;7? In¥%; and < 8,. Then, constant 3, can be selected so, that when
£< &, the coefficient of @1 in (23) satisfies the inequality
n ll’_ -1 2 _q_)i) —
(A" — B+ A" S v @2 e B ) < —1
In the region 1 > min {;, B, In 3/;} the above inequality will be fulfilled if >0
is chosen sufficiently large. (Obviously, 3 depends on M, and M,). Then, by (23), when
£ < & the function CI)’: cannot assume its greatest value inside { when 7= T, or £ = &
or when 7= U (7, £).
If ‘D’: assumes its greatest value when 7= 0 or when £ =0, then

0,1 = ?;;n P <(Dn<K11

where K, is independent of n since CDn can be expressed in terms of wy, w, and their
derivatives when 7= 0 and £=0.

If, on the other hand, (I)’: assumes the greatest value when 7 = 0, then at this point
oD, 8m << 0 and from (12) it follows, that
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@

n-1 e~BE < — My

1 1
O - DL O —
" 2 or ) P1

n-1°
by virtue of previous assumption. Consequently, we have
1 1
Dpt < max {—2—- My, Kn} in Q@ when £<CE;, O, max {—2— M, Ku} max [eBE(p; B}
Since @ (BM) < ¥z, we have eﬁitpl (Bim) < 2, if BB < 4/, Letus choose §
from the condition MP% == 4/;. Then
@, << max {M,, 2K y,} when & <C &,

1f we now assume that M, = 2K, , then (I) &M, when £ & where £ depends on M,
and M, . Let us now consider F . By Lemma 5 we have

Ly (Fp) - CFp> — N, in Q@ when E< &,

Let Fpu =F g, (Bm) =, where ¢, (s) is a function defined previously. We have

Ly (Fyd) 29 (0" 0 B P+
(24)
, o~ Bk
+(0m — o+ 478 T v (w2 2 )F‘> N £

If B < In¥/,, then —9%/, <@y <~ @) < —1/p, and 1 <9y < ¥, By Lemma
3 we have (w™ )2 > 1, > 0 when < §,. Let <X min {8,, f,7* In 3/,}, For such values of
17, we can choose [3, such, that the coe{ﬁcient of F} in (24) satisﬁes the inequality

—nBs + AnBz + v (") By !
HpB,is sufﬁciently large, then this mequahty will be sansf\ed in the region

1 > min {8,, B, In ¥/,}. Obviously, 3, depends on M, and M, . Following the reasoning
adopted in the proof of Theorem 1, we obtain

Fl < max {{, M,, Ny, Npy} in Q when £ < §
where N,; depends on M, and where N,3 = max F when 7=0 and £=0, We have
F, < max {1/, My, Ny, N3} max [eﬂﬂiq)l Bam)] < max {M,, 2N,, 2N}

if PR, (Bun) <2 and PR Y, Let us choose My = max {2V,,2N,,} and let &
be given by P58 = 4/ Then F, <M, when £ & where & = min{§,, &;).
Boundedness of (I)n and ¥, infers the uniform boundedness in n of first and second
derivatives of w™.
Theorem 3. Functions w™ converge uniformly in () to the function w, which is a solus
tion of the problem (5) to (7), provided that either < 7; or %, £ &, -
Proof. We have shown in Theorems 1 and 2 that the first and second order derivatives
of w" in ) are uniformly bounded in # when £ £ 7; or % £ &, . We shall now prove that w"

converge in such a region of {}, uniformly. For +® =" —;»»-1, we have the equation
q

vt el — o e o pr i L w2y o = g

with the conditions



964 0.4, Oleinik

0 {vwn']y n__ vovn—t %‘ ‘\?wnn'“l?}n_ 1 )*n=0 == ()

Mheo=0, Mhoo=0. "lyen™ A

Let us consider a function v? such, that 7 = (278" , n We have
i 1

n n-1, n-1 N 2 n-1
v (@™ Dyma Pz — MP4E + Pa?yy - Ve i (T - W) 0

+2v (W12 Bo, ] (v (0TI BE A peB — @) " = 0
We shall choose the constant 8 < such, that in the boundary condition for v, when

n=0

(25)

T n-1 oy 71 n-1__
Vi 1”1: + By o - (v T — o) 9" = 0

(26)
the coefficients of v} and v,"™?! satisfy the inequality
max | vw " — v,/ < gv[flmin »" ! (r, §,0), <1
Having established 3, we shall now choose a > 0 such, that
max |vw *H w1 +w" )| < g(a — max | v 1P+ pfl)

Then, if |v"| attains its greatest value at some internal or boundary point of {}, from
(25) and (26) it follows that max | »"| <{ ¢ max | »,*7Y, i.e. sum of the series
ot 4 v+ ...+ e . .., partial sums of which are equal to whe * P is gmaller
than the sum of the geometrical progression, and is, therefore, uniformly convergent. The
boundedness of w™ and its first and second derivatives implies nniform couvergence of all
first derivatives of w™ as n + o0, From {8) it follows that w" also converge uniformly as
n oo, provided that v <U (v, £} — O;, where 8, > 0 is arbitrary.

Thus we have shown that solution of the problem {5) to {7) exists in (1 if x, or 1, are
sufficiently small and, provided that solution of the problem (8), (6} and (9) exists.

We shall now show one of the methods of constructing w™. (We should note that
analogous methods were utilised in investigation of linear equations of the type (8) in [5]).
Below we shall give a boundary problem for an elliptic equation in a special region, the
solutions w*™ of which converge uniformly to w" as € — 0. A corresponding boundary
problem for a parabolic equation can be constracted in the analogous manner.

Let G be an infinitely differentiable bounded region in the &n-plane such, that a
cylinder {0, t;] % G contains ) and the boundary o of G contains a segment [ =25, xo+28]
of the £-axis, where 6 > 0 is a small number.

We shall assume that in some vicinity of the point 4 of intersection of o with the
straight line £=0, o lies on the straight line 77 = 7, = const. Let us consider a singly
connected infinitely differentiable region () whose boundary 5 coincides with the cylinder
[«1, to+ 1] X G.when =1 < T to+ 1, Q being interior to the eylinder [—2, 2, + 2] x G.

We shall denote by {}, these points of Q, for which either 7.0 and f>/0, or T2 #5. Let
us also extend smoothly the coefficient Py from (8) and the functions vg and py, from (9, to
all values of £ and 7. We shall denote by §, the boundary {7 = 0, 0 < & <C z,,

0 << U (0, B)} oftheregionQ, §, = (0 <Cr <ty £E=0, 0K <
U, )} and §; = {0 <7 <t 0T E 20, m = 0).

We shall also assume that a smooth function w* exists, defined in Q — {), and satis-
fying the conditions
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W*|emg =wy on 1, w*|i_g=w, on 5
w*) = 0(E4Y near S, when £ <0 and 72> 0
Lw®) ( 2

Lw*)=0(7") near S, when £>0 and 70
l (w*) =0 (EA) on S near the segment [0, td of the T-axis

lw*)=0 (") on S near the segment [0, xo] of the £-axis

It can be assumed that w* has continuous sixth order derivatives in the closed region
Q — 2, and is an infinitely differentiable function outside some neighborhood of the
boundaries S, and S, of the region {}. Such a function w* can be constructed if wy, w,, v,
and p, are sufficiently smooth and if, apart from that, w, and w, satisfy the conditions,on
the 7, f- and 7-axes, of the problem (5) to (7).

For example, w* can be constructed as follows. We shall assume, that in the vicinity
of S, when £< 0 and 72,0,

m

% ow E Mw
wt=w g | m>4 (27)

71— aam E=0,
Here derivatives of w with respect to £ when £ =0, can be found from (5) and from the
equations obtained from it by differentiation with respect to £ under the condition that
w = w, when £=0. When 7£ 0 and £3.0 near the boundary S, of (), function w* can be
found from
ow ™ a"w
* == LI —_—

=0

where derivatives of w with respect to 7 when 7=0 can be found from (5) and from the
equations obtained from it by differentiation with respect to 7, provided that w = wy when
T=0. It is easy to see that the function w* given by (27) and (28) near the boundary of €}
lying on the planes 7=0 and £ =0 and extended in an arbitrary smooth manner into the
remaining part of the region Q — (), , satisfies the imposed conditions provided that w, and
w, are sufficiently smooth and fulfill the conditions of compatibility on the 7=, £~ and
n-axes. When constructing the functions w" satisfying Equation (8) and conditions (6} and
(9), we shall use w* extended in an arbitrary smooth manner to (0, , as w®. We shall assume
"—=1 possessing bounded derivatives of the fourth order in Q which is a
solution of (8), (6) and (9) in ) is already constructed and we shall try to determine w".

It will be shown that w” = w* in Q = ), if W 1=w* in Q - Q,. Let Og=0 — g5 where

qs is a segment [~28, xo + 28] of the f-axis and let S8 =[~1, 5+ 1]08 . We shall
consider the operator

that the function w

LF () = & (We: + wgg + wae) + agWec + agee + aan + v @)W —
—wr — MW + (Px)ewn — 2 (a; + ) w
in Q. Here € > 0, the infinitely differentiable functions a,, a; and a, are positive when
T<~Y% and when T > £, -+ 0, ay is also positive in the S-neighborhood of S, while
a, is positive everywhere in this neighborhood except at the points lying on the plane

£&=0 when 0 <{ 1 < #j- At the remaining points of Q, functions a,, a, and a, are equal
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to zero. We choose § small enough to ensure that g,, a, and o, are equal to zero in {) (V)
will denote the mean value of ¢/ within a circle of radins & , where a positive, infinitely
differentiable kernel is used in the averaging process.

Consider, in (J, a boundary problem for the elliptic equation

L@y = (e (29)
with the following boundary condition on §
dw .
‘;,;;;‘ == (I‘ )g (30)

where n is a vector normal to 5. Function f appearing in (29), is defined in Q thus:
f =L@ + aw. + ae* + agon® — 2a%
in @ ~Q, f=0in ) and is an arbitrary smooth continuation of this function (with bounded
fourth order derivatives) in the remainder of . Function F is
Vy Py . .
Wt e oom Sy Fe

Here y is the intersection of § with the boundary of ¢ —~ £}, . On the remainder of §,
function F appearing in (30) will be an arbitrary smooth continuation of F given on §, and

Y.

Au*

- on T
dn

Obviously it can be assumed by virtue of the properties of w* , that function f has, in
Q, bounded derivatives of up to and including the fourth order and is infinitely differ-
entiable outside the -neighborhood of {}, while F has bounded fourth order derivatives in
some neighborhood of S, and is infinitely differentiable on the remainder of 5. The boundary
problem {29) and {30} has a unique solution W*" in Q, and since the boundary of Q,
coefficients of the equation (29) and the right-hand sides in (29) and (30) are infinitely
differentiable, it follows that 1°" is an infinitely differentiable function in the closure of
Q (see e.g. [6]). Uniqueness of the solution to the problem {29) and (30) follows from the
maximum principle [7]. We shall now show that " and their derivatives up to and includ-
ing the fourth order, are uniformly bounded in &.

Lemma 6. Solution w*" of the problem (29) and {30) in the region (, are uniformly
bounded in €.

Proof. Let us make a substitution
w = gy
in (29), where ! () =1 when 7<~ 1 and Y (3) =1 + b (1 + 1) when
— 1<t < 4+ 2. Constant b > 0 shall be chosen so, that P! <X P'in Q. Let

6b {ty + 3) < 1. For the function »*, we shall have in

£ £ € £ ; n-14 2 £ € €
AV | aw - awag o ago Db v (W) 0 0 f e e (P,

Doy Bt e ;b gt ) 3D
- 2{a -l 6)—@« v 5 -l [{a: - e)w{;?. — F—z(al + s}] »¢ == 1};
and the boundary condition on §
£ F)
%%_:”(T‘i when — 2 <1 < lo+1 (32)
¢ oypljon F
+ ye — { )E when T;’-IO _;1 (33)

n Pt P
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Since
Pt av
3;;‘313311 %-Q{) whent >4 +1 on §
the coefficient of »* in (33) is nonpositive. () can be assumed convex when 7 2t + 1).
Coefficient of »° in (31) is negative.Indeed, — (a; +8) -+ {2, + &), 2 /! <O, since
Yo /P <1, and P} > 0 when 7> — 1 and a, > 0 when 7< ~ % . Applying the estimate
proved in Theorem 4 of [7] to the solution of the elliptic equation (31) with the boundary
condition (32) and (33) we shall find, that ¢, and consequently w*”, are uniformly bounded
in £ over Q.
Lemma 7. Solutions w=™ of the problem (29) and (30) possess, in Q, derivatives up to
and including the fourth order, uniformly bounded in €.
Proof. We first note that in Q, when T > f,+ 6 -+ ry and when v < —1/, —ry,
where r, is an arbitrary positive number, equation {29) is uniformly elliptic with respect
to €. Consequently, in agreement with well known a-priori Schauder type estimates (see
e.g. [6]), the derivatives ofw *" of order m are uniformly bounded in & with respect to
their moduls when © >> 2y -+ & + r, and whent < —1/s — ry, provided that w1
possess bounded derivatives of the {m ~ 1)th order in that region.
Let the point P (£, n) belong to o5 where 1€l > 28 and let Ay denote its O-neighborhood
on the {7-plane. We shall consider the cylinder

By = [/ — ry, ty -+ 6 4 1] X4,
and we shall show, that in this region, w °" possess derivatives of up to the fourth order
inclasive, uniformly bounded in . It can be assumed that in By, the coefficient a, depends
only on 7, while a, and a, depend only on £ and 7. We shall pass to new coordinates £
and #” in Ay in such a manner, that the boundary belonging to 45 will transform into a
straight line 1}': 0, while the direction n of the normal to o will become the direction of

the 7"~ axis. Boundary condition (29) will, in new coordinates which we shall from now on
denote by £ and 77, assume the form dw *"/ 9 = F *,

Let T (7, £, 1) be a function in By such, that 87/0n == F * when 1) = 0. Function
z=p"" — T satisfies in By, the equation
(34)
M) =€+ a) 2. — 2+ auzge + 2052, 1+ Gny, +byz; 4 byz, — 28 + ay) 2 =f.*
and the condition z,q =0 on S. At the same time 2;,0,® + 2a,0;0, -+ 2502 > Ay(a? a2
In order to obtain an estimate of first order derivatives of z with respect to £ and 7,
we shall consider the function

AL = p? (§,n) [2:2 + 2,2] + 2% + ¢gm, ey >0
Here constant ¢; is assumed to be sufficiently large and will be selected later, while
P5 (§,m) is a fanction equal to unity in Ag;; and equal to zero in some small region near
the boundary of 45 not belonging to o. Also, ps, = 0 ono.
it is easily seen that A1/ dn = ¢, 2> 0 on S, consequently A! cannot assume its

greatest value on S. If A! attains its maximum at the points on the boundary of B where

pg == 0, then
At < max [t el <6
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where ¢, is independent of ¢. It can easily be checked that for sufficiently large value of
c1s M (At) — AL > — ¢ in By provided c, is sulficiently large. Hence, if A assumes its
greatest value inside By, then A <c,. When ¥ ==, + 8+ r; and T = —'/3— r then
A is aniformly bounded in €, the fact which we have already established. Since Al is

uniformly bounded in 2in By, therefore z £ and 2, are bounded in
We shall represent (34) as follows (B, , 8, < 0).

M@O=T@+M@H=1% TEO=€+a). —5
It can be assumed that the coefficients of the operator M are independent of 7.
Consequently, I' (1) satisfies the equation
MDes=IIM+MI)=T(*iB;, I'|,_;=0 on S (35)
Consider, in le, a function
A% = py (3,3 + 3,3+ T2 ()] + o5 (57 + 2,) + ean

Using (34) and (35) we easily obtain
, an?
M(A)—A*>—6 in By, Gr=0>0
on S, provided ¢, > 0 is sufficiently large. From this it follows, that A? is uniformly
bounded in & over By, , while (), tep and 2z, are uniformly bounded in € over
Bs,. 8, < 8,. From (34) it follows that L
the equation for z,_ of the form (q; &) z., — z, = I and taking into account the bounded-
ness of [ in By, and of z, whent = —1/, — ryand T = { -+ 6 + r;, we reach the con-

clusion that 3. is also uniformly bounded with respect to ¢, in By,.

is also uniformly bounded in €. Considering

Since the function I" {z) is bounded in 832 and satisfies (35) with the boundary con~
dition T, |, =10 we can, for " and By, , consider the functions A* and A? just as it was
done for z, and obtain the estimates uniform with respect to & in By, (8, < 8,), for the

following derivatives
r., r,, s, I, rr), r r

Z 1 % Ent nnt T
Differentiating (35) with respect to T we obtain, for F-r'
((11 + €) r-:*.': - - al') F,c,; -+ M (Fr) = (F (fg*))'g

together with the condition T, |,_,= 0 on S. By definition, 2y t) is small in B 8-

Therefore, equation for F,,. has the same form as (35). Hence, the derivatives of I" of the

type
) (N F,m, [z T X (alv%g)F,_“—«(l——al')F_n, 11:1111‘ rrt

s L5 hi]

can be estimated uniformly with respect to € in By, (8; <( §,), in the manner adopted
previously for z. Analogous considerations for I, yield, in By, (8;<C §,), uniform in ¢

boundedness of derivatives

Cegs Voo Togzz, T (el —(1—=2a) T, T, T

TR

from which it follows, that in Bb's' third and fourth order derivatives of z containing more
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than one differentiation with respect to 7 and uniformly bounded in & together with first
derivatives of [ (I') with respect to £ and 7, satisfy the Lifschitz condition with respect
to £ and 1), uniformly in ¢ and 7. From the Schauder type estimates (see [6]) for the
elliptic equation,

M@ =—-T@+TFE*»

it follows, that the derivatives of up to and including third order of I with respect to £
and 7 are bounded, and satisfy the Holder condition uniformly with respect to € and T

in By (8¢ <(8;). Schauder type estimates for (34) for z written in the form
ML (z2) = —T(2) + fe*

lead to the conclusion, that z possesses derivatives with respect to £ and 7 of up to and
including the fourth order uniformly bounded in & and Ton By, 8, < 8. In this manner
we have obtained the estimates of derivatives of w®" with respect to 7, £ and 70 of up to
and including the fourth order in some neighborhood of the whole of S with exception of
the neighborhood of S, and of the neighborhood @ of the intersection of S with the plane
£=0, lying in the plane 7 = 7,.

We shall now introduce, in (29) and (30), a new function W, defined by

w = WeH™M, 9= —an N, —n) /Ny, &=const >0
For W, we shall have the following boundary conditions
ow ow
W_GW=(F)" when =0, —-—(ﬁ--—aW=(F)¢ when 1 =1
In order to estimate in Q first order derivatives of *™, we shall consider, in Q, when
—1y — 1 <7 < 1o+ 8+ ry (calling this region Q,,); a function
X, =W+ WA+ W, (W, —2Y)+ k(n), Y=(@W-+(F))x®)
xuM)=1 when|n|{<d
)= —1 wheni{n—m|<?d

#¥M)=0 when 20 <y <n,—28
Here k (1)) is a positive function, which shall be specified later. Obviously, on the

boundary § lying in the plane ) = 0 or ) = 1,, the equality W /dn — Y = 0. holds.
We have

?ax—'fl]- =0 QW Wy + 2W Wog —2W, Y, + 0)=

= 20 (W + W2 — VY + 2W (F)yg + 2 (F),, + K (0)>0

provided k “(0) > 0 is sufficiently large. Analogously, having selected in X, a function
% (n) so, that £’ (1),) <0 and has a sufficiently large modulus, we find that
8X,/ My, <O. Approach employed in the proof of Lemma 4, yields
L’ (X)) + esX1> — o
. ow
L’ (W)= L* (W) +2[(e + as) + v (0" )] 9y 35 + (36)
FA{(v (@™ )2 4 & 4 a5) (@95 + (g0l + (Pr)e Pgn} W

Here c, and ¢y are independent of e. Let us consider in er
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X,* = Xle_m, B = const >0
If 3 is sufficiently large, then the coefficient of X,* in (36) is negative and smaller
e then X,*

has an upper bound independent of €. X,* cannot assume its greatest value when =0

than ~ 1. From (36) it follows that if X,* assumes its greatest value within Q

and 7 =1, ; on the remainder of the boundary of Qn function X,* is uniformly bounded in €
by virtue of the previous estimates. Estimation uniform in &, of the second and third order

derivatives of w*" proceeds analogously by considering the functions

=Wt WEAW R+ W (W —2Y)+ W, (W, —2Y )+ g2 () W 24k (n)
Xo=(Xo) + g2 (M) (W2, 4+ W2 e + W I+ W (W —2Ye;) +
F W (W e —2Y 1)+ WnET (1V.,li., — Z-Y&'r) + k (n)

g1(n) =Owhenn <3/2, ¢ () =Owhenn >n;—98/2,g,(n) =1whenn; — 6>n>8

Here (X,) “is sum of the squares of third derivatives of W with respect to fand T.
Estimates of X, and X, can be obtained in the manner similar to that used for X;, but in
derivation of the inequality of the type of (36) for X, and X, use should be made of the
fact, that the coefficient of W"I"? in (29) is positive when 7 <8 and 5, — 9 < 8, just as in
the proof of Lemma 5.

When estimating the fourth order derivatives of W, we should turn our attention to the

following. Let us consider the function

Xy = (Xa)' + g2 () (X)" + WﬂEEE, <I/V1IEEE - 2Y&EE) =+ W'ﬂtr‘r (W-m'-rr - 2Y‘n"r) +
+ Woagee Wagee — 2Y ez + Woeor (Woeg —2Y o) + 5 (0)

where (X,) “is the sum of the squares of fourth order derivatives of W not differentiated
with respect to  and (X,) ”’is the sum of squares of the fourth order derivatives differ-
entiated more than once with respect to 7.

Function X, includes third order derivatives of ¥, hence also of (¥ ). Operator LOE(X4)
can be estimated in terms of L’® (Y..-), rs (YEEE)’ L® (Y'-‘-E)
taining fifth order derivatives of (F),. By virtue of its construction, function F is in-

and L’ (Y g), con-

finitely differentiable outside the S-neighborhood of S, and possesses fourth order bounded
derivatives on S. In the region Q belonging to the S-neighborhood of S,, operator 1°¢
contains second order differentials in & and 7 with the coefficient & of the type £(5% / 4t?)
and &(0%/08?). Since F has fourth order bounded derivatives, therefore fifth order deriv-
atives of the averaged function (F ). are of the order of 1/ ¢. Consequently, application
of the operator L°¢ to third order derivatives of (F) gives, as a result, a quantity
bounded in €. The remainder of the procedure of obtaining the estimate for X, follows that
employed for X,, X, and X;. Thus we obtain the final result, that the derivatives of "
of up to and includipg the fourth order, are uniformly bounded in .

Theorem 4. When & -0, solutions 1" of the problem (29) and (30) in the region Q,
converge to the solution of w” of the problem (8), (6) and (9) in Q.

Proof. By Lemma 7, the derivatives of ©®" of up to and including the fourth order

are uniformly bounded in ¢. Consequently, a sequence @®x’* can be chosen such, that as
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as g5 — 0, functions w*™ converge uniformly to w” in Q, together with their derivatives
of up to and including the third order. Obviously, the limit function w” satisfies, in Q,
Equation (8) and the boundary condition (9), when 7 = 0. We shall show now, that w"
satisfies the conditions (6). To do this, we shall have to prove that w® = w* in Q¢ - €, .
Let w" — w* = Z. By definition, we have in Q - (),
aZ o+ aZy; +asly, VWP L, — Z,—nZz+peZ, —2mZ =0

and @z / 6n = O on the part of the boundary of Q — {),, which belongs to S. Let us consider,
in Q — Q,, function Z* defined by Z = Z* /* (T) where /! is a function constructed in the
proof of Lemma 6. We shall obtain for Z* an equation in ¢ — (},, in which the coefficient

of Z* will be strictly negative in the closure of Q — (},. Let E (7, £, ) be a smooth function
in Q such, that E/dn <0 on S and E > 1. Consider the function Z* = Z* (E + ¢) where ¢ is
a positive constant. In the equation obtained for Z! the coefficient of z* will be negative,
provided ¢ is sufficiently large. Boundary condition on S is 921 / 9n —qZ1= 0, where

ay = —0E ] dn > 0. Modulus of Z! cannot assume its greatest value on S, since at the
maximum of | Z% on S we have Z1 (8Z1 / dn) —a; (Z2)? < 0, which contradicts the boundary
condition on §. Maximum of | Z*| cannot also be achieved inside Q — {},, since at the maxi-
mum of |Z| we have Z ! = 0,Z;' =0, 2,1 =0, Z1Z ' < 0,212, < 0,2'Z_,' <0,
which contradicts the fact that at this point the equation obtained for Z! is satisfied.

It can be shown in the analogous manner that the maximum of | Z* cannot be reached on
the boundary of ¢ — £); when 7= 0 er £ = 0. Consequently Z* =0 in @ — Q,, from which it
follows that w” = w* in Q — Q. Hence w" |,y =w, and w" [;_, =wy

We shall now show that w” =0 on the surface = U (7, £). From previous arguments it
follows, that w" =0 when 7=0 and 5= U (0, £), and also w" =0 when =0 and y=VU(7,0).
Since w®™!=0 on the surface p=U(T, &), w" satisfies, on this surface, the equation
w, - nw® — Pxw,™ = 0. We have said before that the direction (1, , —— p,) lies on
the plane tangent to the surface 77 = U (7, £). These directions form a vector field on this
surface. Integral curves of this field intersect, on continunation to smaller values of 7, the
boundary of the surface either when =0 or when 7= 0, and we have there " = 0. Since
w" is constant on these integral curves, w™ =0 on the whele of the surface n = U (7, &).

We should note, that the constructed function w® possesses, in {1, third order derivatives
satisfying the Lifschitz condition.

Let us now return to the initial problem (1) to (3). We consider fulfilled all the previous
assumptions of sufficient smoothness of p, vy, uy, u,, W,, and w, and conditions of
compatibility of these functions, from which the existence of the function w* shown above,
can be inferred.

Theorem 5. There exists a unique solution of the problem (1) to (3) in the region D,
provided that either £, 7y, or %3 & where 7, > 0 and & > 0 are some numbers defined by
the data of the problem (1} to (3). This solution has the following properties: u > 0 when
y>0,u_ >0 when y >0, derivatives 1, Uy, U, and u__ are continuous and bounded in D.
Also, U,y [ Uy and (w,,,u, — u,,”) / u,? are bounded in D.

Proof. Let w be solution of the problem (5) to {7) constructed in the course of proof of

Theorem 4. We shall determine u using the condition w = ty , or
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) § ds 37

w(t, z,8)
¢

Since w (t, x, s} > 0 when s <U{¢, x) and w =0 when s = U (¢, x), then u » U {z, x)

as y o0 and 0 <u < U {t, x} when 0 <y <o, uty=° = 0. Conditions “1t=n = 4o and
u% x=p = U1 are also fulfilled by virtue of the conditions Wo=ugy and w; = yy Function
defined by (37) has the derivatives uy =w, uy, = w w,and uy, = Wy + w

Derivatives 4, and u, are given by

U u
wy(t, x, s)ds wye(t, z, s)ds
Uy == W wi(t, z, s) ° Uy == — W wi(t, z, s}
0
Let us put — Uy — Uty — Py Vi
=

u
v (38)

We shall show that u and v given by (37) and (38), satisfy the system (1). Differentiating

uy = w, we obtain

P .
Uy = "W + Uglly, Uyt =W, vy

consequently v possesses a derivative with respect to y, Differentiation of (38) with res-
pect to y, ylelds

or Vylhy - Dl ==~ Uy o Ul — Uy Uy -+ Vg

— Uy — Ul — Py - Vi,

vyty + "v"x+“uu[ @

] + upy + Uty — Vit =0 (39)
v

Function w satisfies the equation (5). Substitution of uy for w in (5), yields

2
U, U e B
U tYYY yy Uyy UxUyy Uyy
vizy? (T)—uyt+ut;;“u “yx“‘_u;“" +Px‘,;;— {40)

From (40) and (39) it follows, that uyizy + uguy, = 0, i.e.

ug + v, =0 (41)
Equations (38) and (41) together form the system (1). We shall show now, that v
satisfies the condition ”’y—-:o = py {2, ). From condition (7) it follows that

‘wa,n—-—px
=\

n=0

. (vwwﬂ—px )
v=0 w

Uniqueness of solntion of the problem (1) to (3) follows from the uniqueness of the

while (38) implies

= ( ‘”‘w—Px)
Uy

== Pp

? Ju=o o ™

solution of (5) to (7). For, suppose that two solations w”and w’’ of the problem (5} to (7)
exist. Their difference V° = 1’ — '’ will satisfy

v W)V, — V. —nVe® + pVy° +vw, @ +w) V=10 (42)
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in (), together with the conditions
Vok=o=0, V°[ioo=0, V°lmvr 5 =0, (v0'V,°—0gV° + v,V ) g = 0
Consider a function V! defined by

V° = Vigav—8n

where @ and (3 are some positive constants. For ¥'? from {42), we have

v (wl)zvﬂnl - V-:l - nVEI + [px — 2v (w,)sﬂl V"l + (43)
+ '@ +w'’) +v @) —alVt=0

and the conditions
{44)

Viemo =0, Viico = 0,V mur, =0, (v0'V ' 4- (05" — 06—V W) |10 = 0

If @ and 5 are chosen sufficiently large, then from (44) and (43) it follows that | V|
cannot assume its greatest value on the internal points of {1, nor on its boundary. Con-
sequently V=0 and w”=w " in {1, which was to be proved.

Another proof of uniqueness of the solution of (5) to (7) is given in [8]. A continuous
dependence of the solation w of (5) to (7) on the given functions p, Uy, Ug» and u, can
be proved in an analogous manner, Behavior of the solution of {5) to (7) and of (1) to (3)
as L+ o was investigated in [ol.

Convergence of finite difference approximations to solutions of Prandtl’s system was
investigated in [10].
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